Managing Conflicts in Cross-DevOps Declarative
Reconfigurations

Jolan Philippe, Charles Prud'Homme, Héléne Coullon
March 24, 2025

DiverSE team - IRISA

Hello world

Jolan Philippe, Postdoc in the Taranis project, WP2
Université de Rennes, DiverSE Team
(Ax.A\y.x@y) Jolan.Philippe inria.fr

Topics of interest

= Distributed computing
= Infrastructure-as-Code

= Decentralized reconfiguration

More details on: https://jolanphilippe.github.io/

https://jolanphilippe.github.io/

An emerging philosophy
= Development Side writes code with frequent updates, introducing potential errors;
= Operations side uses the application and requires it to function properly;

= DevOps bridge the gap between Development and Operations, with tools and practices

Continuous Integration and Continuous DeploymentE

Build Push

image artifact
tests app to server
Docker to repo

Run Package Deploy

Continuous Deployment

Declarative Reconfiguration

= Specify the desired state: Define the target configuration of resources
= Automated reconfiguration: A declarative engine plans and executes the reconfiguration

= Adopted in laC (Infrastructure as Code) for provisioning or configuration management

DevOps e :

e o . | !
|'n| T . '3 Infrastructure 3

Submit reconfiguration ~ -~------------- ;

Cross-DevOps teams for multi-site infrastructure

DevOps team DevOps team
® ® ® ®
™ % * 7

® ®

T

DevOps team
® ®

™ %

Multi-site infrastructure

Cross-DevOps teams for multi-site infrastructure

DevOps team DevOps team
® ® T ® ®
™% _. * 7

reconf’

Multi-site infrastructure

Cross-DevOps teams for multi-site infrastructure

DevOps team
° °

DevOps team
® ®

DevOps team
® ®

"4 |

i-site infrastr fe

Potential conflicts
—

Running example: Reconfiguration with

conflicts of multi-site OpenStack

e [

haproxy

)_
rabbitmq

mariadb_master

N\

facts
facts

Site master

Strong version dependency between
components

Components have versions vy, v», v3

Components are all in vy

common

mariadg
—e
.) keySlo
haproxy|
—.)— mariadb_worker
master -
——.)— 208 neutron

keystone

Site worker 1

N

Site worker n

Update Site master's common from
v to v
Update Site worker 1's nova from

vi to v»3

Challenge and approach

How to detect and explain conflicting reconfiguration objectives?

How to manage multi-objective reconfiguration conflicts, in a decentralized environment,
without any oracle?

Extended decentralized reconfiguration engine BALLET into BALLET "
Local planning with conflict management

Backtracking of conflict causes to DevOps

Ballet for decentralized reconfiguration

4 DevOps f DevOps

assembly & goals

assembly & goals

+ inventory + inventory Planner
Front Decentralized inference of

reconfiguration plans (RPs)

i Gateway S é»IEteway 1. Iterative process for local actions
: : : = Local inference of behaviors
goals goals goals = Constraint diffusion with
message propagation (Gossip)
Planner « ***** > Planner ﬁ— -- *% Planner = When propagation ends,
: RP § § RP § : RP inference of RPs
: 1 : : i : : J :
|:Exec:|utor ef o »@ - - 3 Executor Executor [A. Omond’s thesis]

Coordinated execution of RPs
Node; Node; Node;

Ballet’s usage: For Developers

Life-cycle and dependencies

Simple language (DSL in Python) to define
component

= Places: milestones of the reconfiguration

= Behaviors: interface of actions for the
DevOps

= Transitions: concrete actions between places,
associated to behaviors

= Ports: Provide (resp. use) information to
(resp. from) external components

Ports are bounded to places and transitions

deployed_v,

—o

service
(v1)
..
service
(v2)
Y
service

deployed vg (v3)

deploy
initiated

uninstall

cmnmaster : common

Figure 1: Visual representation of a versionned

component for common

Ballet’s usage: For DevOps

Target assembly (YAML)

Listing 1: Language to define reconfiguration goals
= A list of components to appear for DevOps usage

= How components are connected <goals> = behaviors: <bhvr_list>

ports: <port_list>
components: <comp_list>
<bhvr_list> u= ...
Declarative language for defining <bhvr_item> u= — forall: <bhvr_.name>
| — component: <comp_name>
behavior: <bhvr_.name>

Reconfiguration goals

reconfiguration goals

= Behavior goal: Specify a behavior <port.list> = ...
<port_item> = — forall: <port_status>
that must be executed _ component: <comp.name>
. . port: <port_name>
= Port goal: Specify a port status status: <port.status>
(active, inactive) <comp_list> z= ...
<comp_item> = — forall: <comp_status>
= State goal: Specify a component | — component: <comp_name>

state (specific, running, initial) status: <comp.-status>

10

Running example: Assembly

deployed _v4

deployed_v,

deployed_v3

deploy

uninstall

cmnmaster : common

..)_

master
v1)

deployed_v4

deployed_v,

service

master
v2)

master
(v3)

v2)

service
(v3)

deploy

pause
update

initiated

mdbworker1 : mariadb_worker

uninstall

o

mariadb
(v1
service

.

v1)
L)
mariadb!
v2)
L)
mariadb!
(v3)

deployed_v,4

deployed_v,

initiated

novaworker1 : nova

deploy

pause
update
uninstall

11

Running example

deployed_v4

deployed_v, Se(‘;‘g‘)ce
service
v2)

service

deployed vs) 0oy

deploy

uninstall

cmnmaster : common

master
v1)

master
v2)

master
v3)

o) — - @)
service mariadb
(v v1)

o) @

service mariadb
v2) v2)

—®

service mariadb
(v3) (v3)

deploy

pause

update

initiated uninstall

mdbworker1 : mariadb_worker

deployed_v,

deployed_v,

intgrrupted

initiated

novaworker1 : nova

goals:
— components:

— component: cmnmaster

status: deployed_v2
— ports:
— forall
port: service
status: active

deploy

pause
update
uninstall

12

Planning Concerto-D programs

Input: goals and lifecycle

Output: a reconfiguration plan

Local solving: Model the components’ lifecycles as automaton, and using constraint
programming, find a word (i.e., sequence of behaviors) in this automaton meetings with
reconfiguration goals

Message diffusion:

OUT From the word, calculate status of ports and infer potential sync needs. Messages with
ports statuses are diffused.
IN Received messages are translated into additional constraints to enrich local model

13

Constraint diffusion - without conflicts

cmnmaster mdbmaster mdbworkerl ksworkerl ~ novaworkerl @ 'ocal solve (SAT)

‘ message := (source, port, status, final)

14

Constraint diffusion - without conflicts

cmnmaster mdbmaster mdbworkerl ksworkerl ~ novaworkerl @ 'ocal solve (SAT)

‘ message := (source, port, status, final)
(1)

(1) (cmnmaster, service(v2), enabled, True)

14

Constraint diffusion - without conflicts

cmnmaster mdbmaster mdbworkerl ksworkerl ~ novaworkerl @ 'ocal solve (SAT)
‘ message := (source, port, status, final)

@ (1) (cmnmaster, service(v2), enabled, True)
(2) (mdbmaster, service(v2), enabled, True)

14

Constraint diffusion - out conflicts

cmnmaster mdbmaster mdbworkerl ksworkerl ~ novaworkerl @ 'ocal solve (SAT)
‘ message := (source, port, status, final)
@ (1) (cmnmaster, service(v2), enabled, True)
(2) (mdbmaster, service(v2), enabled, True)
. . (3) (mdbworkerl, service(v2), enabled, True)
3

14

Constraint diffusion - out conflicts

cmnmaster mdbmaster mdbworkerl ksworkerl ~ novaworkerl @ 'ocal solve (SAT)

‘ o message := (source, port, status, final)
(1) (cmnmaster, service(v2), enabled, True)
(2) (mdbmaster, service(v2), enabled, True)
. . (3) (mdbworkerl, service(v2), enabled, True)
(4) (ksworker, service(v2), enabled, True)

14

Constraint diffusion - out conflicts

cmnmaster mdbmaster mdbworkerl ksworkerl ~ novaworkerl @ 'ocal solve (SAT)

‘ o message := (source, port, status, final)

(1) (cmnmaster, service(v2), enabled, True)
(2) (mdbmaster, service(v2), enabled, True)
. . (3) (mdbworkerl, service(v2), enabled, True)

(4) (ksworker, service(v2), enabled, True)
® (5) ACK (4)

14

Constraint diffusion - out conflicts

cmnmaster mdbmaster mdbworkerl ksworkerl ~ novaworkerl @ 'ocal solve (SAT)

‘ message := (source, port, status, final)

(1) (cmnmaster, service(v2), enabled, True)
) (2) (mdbmaster, service(v2), enabled, True)
. . (3) (mdbworkerl, service(v2), enabled, True)
(4) (ksworker, service(v2), enabled, True)
® o (5) ACK (4)
o (6) ACK (3)

14

Constraint diffusion - out conflicts

cmnmaster mdbmaster mdbworkerl ksworkerl ~ novaworkerl @ 'ocal solve (SAT)
‘ . message := (source, port, status, final)
@ (1) (cmnmaster, service(v2), enabled, True)
) (2) (mdbmaster, service(v2), enabled, True)
. s (3) (mdbworkerl, service(v2), enabled, True)
© (4) (ksworker, service(v2), enabled, True)
® (5) ACK (4)
. (6) ACK (3)
7) ACK (2
= (1) ACK (2)
(6)
)

14

Constraint diffusion - out conflicts

cmnmaster mdbmaster mdbworkerl ksworkerl ~ novaworkerl @ 'ocal solve (SAT)
‘ . message := (source, port, status, final)
@ (1) (cmnmaster, service(v2), enabled, True)
) (2) (mdbmaster, service(v2), enabled, True)
. s (3) (mdbworkerl, service(v2), enabled, True)
© (4) (ksworker, service(v2), enabled, True)
® (5) ACK (4)
. (6) ACK (3)
) (7) ACK (2)
() (8) ACK (1)
)
(8)

14

Constraint diffusion - out conflicts

cmnmaster mdbmaster mdbworkerl ksworkerl ~ novaworkerl @ 'ocal solve (SAT)
‘ . message := (source, port, status, final)
@ (1) (cmnmaster, service(v2), enabled, True)
) (2) (mdbmaster, service(v2), enabled, True)
. s (3) (mdbworkerl, service(v2), enabled, True)
© (4) (ksworker, service(v2), enabled, True)
® o (5) ACK (4)
() (6) ACK (3)
) (7) ACK (2)
(©) (8) ACK (1)
™
®) GLOBAL ACK

14

Unsatisfiable models management in Ballet™

We first attempt solving the model. Two possible cases

SAT: A word is found, the process is like BALLET
UNSAT: We find the minimal set of unsatisfiable constraints using QuickXplain algorithm

In case of UNSAT, we backtrack the messages responsible of the local failure to the
DevOps, building an incidence tree

15

Unsatisfiable local models with

Ballet

deployed_v;

deployed_v,

deployed_va

1)

service
2

Y

service
v3)

deploy

uninstall

cmnmaster : common

master
v1)

| &) - @

master
v2)

master
(v3)

deployed_vs

deployed_v,

initiated

o

senvice

(v2)
| @

service
(v3)

deploy

pause
update

mdbworker1 : mariadb_worker

uninstall

)_ ..Q

mafiadb|
1)

v1

mariadb
v2)

mariadb|
v3)

deployed_vy

deployed_v,

intgrrupted

initiated

novaworker1 : nova

goals:
— components:

— component: cmnmaster

status: deployed_v2
— ports:
— forall
port: service
status: active
goals:
deploy — components:
pause — component: novaworkerl
uninstall status: deployed_v3
— ports:
— forall
port: service
status: active

16

Constraint diffusion - w

conflicts

cmnmaster

mdbmaster

mdbworkerl

ksworkerl

novaworkerl

O] ‘

@ 'ocal solve (SAT)

message := (source, port, status, final)

(1) (cmnmaster, service(v2), enabled, True)
(2) (novaworkerl, service(v3), enabled, True)
(3) (mdbmaster, service(v2), enabled, True)
(4) (ksworker, service(v3), enabled, True)

17

Constraint diffusion - w

conflicts

cmnmaster

mdbmaster

mdbworkerl

ksworkerl

novaworkerl

O] ‘

@ 'ocal solve (SAT)
@ 'ocal solve (UNSAT)

message := (source, port, status, final)

(1) (cmnmaster, service(v2), enabled, True)

(2) (novaworkerl, service(v3), enabled, True)
(3) (mdbmaster, service(v2), enabled, True)

(4) (ksworker, service(v3), enabled, True)

17

Constraint diffusion - w

conflicts

cmnmaster

mdbmaster

mdbworkerl

ksworkerl

novaworkerl

O] ‘

@ 'ocal solve (SAT) @ QuickXplain
@ 'ocal solve (UNSAT)

message := (source, port, status, final)

(1) (cmnmaster, service(v2), enabled, True)

(2) (novaworkerl, service(v3), enabled, True)
(3) (mdbmaster, service(v2), enabled, True)

(4) (ksworker, service(v3), enabled, True)

17

Constraint diffusion -

conflicts

cmnmaster

mdbmaster

mdbworkerl

ksworkerl

novaworkerl

O] ‘

@ 'ocal solve (SAT) @ QuickXplain
@ 'ocal solve (UNSAT)

message := (source, port, status, final)

(1) (cmnmaster, service(v2), enabled, True)
(2) (novaworkerl, service(v3), enabled, True)
(3) (mdbmaster, service(v2), enabled, True)
(4) (ksworker, service(v3), enabled, True)
(5) REFUSE caused by (3) and (4)

17

Constraint diffusion -

conflicts

cmnmaster

mdbmaster

mdbworkerl

ksworkerl

novaworkerl

@ 'ocal solve (SAT) @ QuickXplain
@ 'ocal solve (UNSAT)

message := (source, port, status, final)

(1) (cmnmaster, service(v2), enabled, True)
(2) (novaworkerl, service(v3), enabled, True)
(3) (mdbmaster, service(v2), enabled, True)
(4) (ksworker, service(v3), enabled, True)
(5) REFUSE caused by (3) and (4)

(6) REFUSE caused by (3), (4) and (1)

(7) REFUSE caused by (3), (4) and (2)

17

Constraint diffusion -

conflicts

cmnmaster

mdbmaster

mdbworkerl

ksworkerl

novaworkerl

GLOBAL

REFUSE

GLOBAL

REFUSE

@ 'ocal solve (SAT) @ QuickXplain

@ 'ocal solve (UNSAT)

message := (source, port, status, final)

(1) (cmnmaster, service(v2), enabled, True)
(2) (novaworkerl, service(v3), enabled, True)
(3) (mdbmaster, service(v2), enabled, True)
(4) (ksworker, service(v3), enabled, True)
(5) REFUSE caused by (3) and (4)

(6) REFUSE caused by (3), (4) and (1)

(7) REFUSE caused by (3), (4) and (2)

17

/& DevOps

cmnmaster
deployed_v2
(&)

cmnmaster mdbmaster
service(v2) common(v2)
active active

mdbmaster

deployed_v2
(3

mdbmaster mdbworkerl
service(v2) master(v2)
active active

mdbworkerl

ti! DevOps

novaworkerl
deployed_v3

@)

novaworkerl ksworkerl

service(v3) nova(v3)
active active

ksworkerl

deployed v3

(4

ksworkerl mdbworkerl

service(v3) keystone(v3)
active active

deployed_v2

conflict

mdbworkerl

deployed v3

Output to DevOps

Returned tree

= The tree captures
constraints and
responsible messages

= [teratively built during
backtracking

= DevOps only get their
branch, from the
conflict to the
submitted goals

18

Evaluating Ballet™

= Does the UNSAT management introduce an overhead 7

Compare total time of planning phase in a satisfiable scenario (no conflict between goals)
and in an unsatisfiable scenario (conflicting goals)

Compare the maximum solving time (which might include running Qx) in a satisfiable
scenario and in an unsatisfiable scenario

Experiments run on Grid5000 (gros on Nancy site)

Run cases on multi-site Openstack case and on topological assemblies

19

Evaluating Ballet™ on real use-case

e [
mariadb_master —.)—\

facts
facts memcached

hay
__.)_

common
.)
haproxy|
—.)— mariadb_worker

master

mariadf
—@
keystoge nova

aria

keystone

neutron

Site worker 1

Site master

rabbitmq :
>] »

Site worker n

UNSAT-case goals

SAT-case goals
= Update Site master's common = Update Site master's common from v; to v,
from v; to v = Update Site worker 1's nova from v; to vs
= all components end running
20

= all components end running

Evaluating Ballet™ on real use-case

o—| o g 5 e
common —@
haproxy | mariadb_master —.)—\ - keysto
apoxy|
)_ —.)— mariadb_worker
master
facts _
facts memcached
Site worker 1
rabbitmq H

208 neutron

keystone

Site master Site worker n

‘ SAT-case time (o) ‘ UNSAT-case time (o)
8.4922s (1.29) 10.4161s (1.45)
3.85s (0.11) 3.2124s (0.86)

Planning time

Solving time

Table 1: Average time (for 10 runs, with standard deviation) of the full planning process, and average
time of the maximum local solving times 21

Evaluating Ballet™ on synthetic examples
e 1 _
[-

_—o)— Lt | *———— D

_—o)- o | *—— D

e N

B e N [N B B L
(c)

(a) (b) () (e)

Figure 2: The five assembly topologies used in synthetic examples: (a) central-user (c-user), (b)
central-provider (c-provider), (c) linear (linear), (d) circular (circular), and (e) stratified (stratified).

= One instance of BALLET™ for each component
= Comparing two scenarios: a non-conflicting reconf. (SAT-case) & and conficting one

(UNSAT-case) ’

Evaluating Ballet™ on synthetic examples

topology | #components | initial states SAT-case goals UNSAT-case goals
1 user; user: running user: (state) running user: (state) running
cuser 15 providers provider;: running provider;: (state) running + (behavior) update | provider;: (state) uninstalled
c-provider 1 provider; user; : running user;: (state) running user;: (state) running
15 users provider: running provider: (state) running + (behavior) update | provider: (state) uninstalled
linear 1 provider; provider: running provider: (state) running + (behavior) update | provider: uninstalled
15 transformers | transformer;: running | transformer;: (state) running transformer;: (state) running
1 provider; provider: running provider: (state) running + (behavior) update | provider: uninstalled
circular | 15 transformers; | transformer;: running | transformer;: (state) running transformer;: (state) running
1 user user: running user: (state) running user: (state) running
1 provider provider: running provider: (state) running + (behavior) update | provider: uninstalled
stratified 15 mid-users mid-user;: running mid-user;: (state) running mid-user;: (state) running

1 user

user: running

user: (state) running

end-user: (state) running

Table 2: Testing scenarios for assembly topologies with goals for a satisfiable case (SAT-case), and an
unsatisfiable case (UNSAT-case)

23

Evaluating Ballet™ on synthetic examples

topology SAT-case UNSAT-case
total time (o) | max solving time (o) || total time (o) | max solving time (o)
c-user 23.362s (3.79) 4.1970s (1.40) 19.8341s (0.91) 1.3841s (0.23)
c-provider || 2.0057s (0.30) 11.1907s (1.15) 9.7482s (0.91) 0.7192s (0.17)
linear | 0.7192s (0.12) 34.9178s (2.40) 0.6753s (0.11) 29.0932s (1.64)
circular 1.0587s (0.63) 14.0585s (0.52) 0.4983s (0.10) 1.9996s (0.61)
stratified || 1.8807s (0.25) 10.9338s (1.19) 0.7918s (0.14) 24.0026s (1.32)

Table 3: Average times (for 10 runs, with standard deviation) for the full planningtime alongside the

maximum local solving time for one component, in the SAT and UNSAT cases for each scenario on
topologies.

24

Concluding remaks

We propose a solution for managing conflicting goals in cross-DevOps declarative
reconfigurations

The proposed solution does not introduce a time overhead

The presented work has been submitted to ICSME 2025 (Software Maintenance and
Evolution)

Propose reconfiguration options to satisfy a maximum of goals

Improve BALLET"'s usage of constraint solvers to manage larger models

25

