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An emerging philosophy
= Development Side writes code with frequent updates, introducing potential errors;
= Operations side uses the application and requires it to function properly;

= DevOps bridge the gap between Development and Operations, with tools and practices

Continuous Integration and Continuous DeploymentE
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Continuous Deployment

Declarative Reconfiguration

= Specify the desired state: Define the target configuration of resources
= Automated reconfiguration: A declarative engine plans and executes the reconfiguration

= Adopted in laC (Infrastructure as Code) for provisioning or configuration management
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Cross-DevOps teams for multi-site infrastructure

DevOps team
° °

DevOps team
® ®

DevOps team
® ®

"4 |

i-site infrastr fe

Potential conflicts
—



Running example: Reconfiguration with

conflicts of multi-site OpenStack
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Challenge and approach

How to detect and explain conflicting reconfiguration objectives?

How to manage multi-objective reconfiguration conflicts, in a decentralized environment,
without any oracle?

Extended decentralized reconfiguration engine BALLET into BALLET "
Local planning with conflict management

Backtracking of conflict causes to DevOps



Ballet for decentralized reconfiguration
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Ballet’s usage: For Developers

Life-cycle and dependencies

Simple language (DSL in Python) to define
component

= Places: milestones of the reconfiguration

= Behaviors: interface of actions for the
DevOps

= Transitions: concrete actions between places,
associated to behaviors

= Ports: Provide (resp. use) information to
(resp. from) external components

Ports are bounded to places and transitions

deployed_v,
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deployed vg (v3)

deploy
initiated

uninstall

cmnmaster : common

Figure 1: Visual representation of a versionned

component for common



Ballet’s usage: For DevOps

Target assembly (YAML)

Listing 1: Language to define reconfiguration goals
= A list of components to appear for DevOps usage

= How components are connected <goals> = behaviors: <bhvr_list>

ports: <port_list>
components: <comp_list>
<bhvr_list> u= ...
Declarative language for defining <bhvr_item> u= — forall: <bhvr_.name>
| — component: <comp_name>
behavior: <bhvr_.name>

Reconfiguration goals

reconfiguration goals

= Behavior goal: Specify a behavior <port.list> = ...
<port_item> = — forall: <port_status>
that must be executed _ component: <comp.name>
. . port: <port_name>
= Port goal: Specify a port status status: <port.status>
(active, inactive) <comp_list> z= ...
<comp_item> = — forall: <comp_status>
= State goal: Specify a component | — component: <comp_name>

state (specific, running, initial) status: <comp.-status>
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Running example: Assembly
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Running example
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Planning Concerto-D programs

Input: goals and lifecycle

Output: a reconfiguration plan

Local solving: Model the components’ lifecycles as automaton, and using constraint
programming, find a word (i.e., sequence of behaviors) in this automaton meetings with
reconfiguration goals

Message diffusion:

OUT From the word, calculate status of ports and infer potential sync needs. Messages with
ports statuses are diffused.
IN Received messages are translated into additional constraints to enrich local model

13



Constraint diffusion - without conflicts

cmnmaster  mdbmaster  mdbworkerl ksworkerl ~ novaworkerl @ 'ocal solve (SAT)

‘ message := (source, port, status, final)
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Constraint diffusion - without conflicts

cmnmaster  mdbmaster  mdbworkerl ksworkerl ~ novaworkerl @ 'ocal solve (SAT)

‘ message := (source, port, status, final)
(1)

(1) (cmnmaster, service(v2), enabled, True)
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Constraint diffusion - without conflicts

cmnmaster  mdbmaster  mdbworkerl ksworkerl ~ novaworkerl @ 'ocal solve (SAT)
‘ message := (source, port, status, final)

@ (1) (cmnmaster, service(v2), enabled, True)
(2) (mdbmaster, service(v2), enabled, True)
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Constraint diffusion - out conflicts

cmnmaster  mdbmaster  mdbworkerl ksworkerl ~ novaworkerl @ 'ocal solve (SAT)
‘ message := (source, port, status, final)
@ (1) (cmnmaster, service(v2), enabled, True)
(2) (mdbmaster, service(v2), enabled, True)
. . (3) (mdbworkerl, service(v2), enabled, True)
3
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Constraint diffusion - out conflicts

cmnmaster  mdbmaster  mdbworkerl ksworkerl ~ novaworkerl @ 'ocal solve (SAT)

‘ o message := (source, port, status, final)
(1) (cmnmaster, service(v2), enabled, True)
(2) (mdbmaster, service(v2), enabled, True)
. . (3) (mdbworkerl, service(v2), enabled, True)
(4) (ksworker, service(v2), enabled, True)
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Constraint diffusion - out conflicts

cmnmaster  mdbmaster  mdbworkerl ksworkerl ~ novaworkerl @ 'ocal solve (SAT)

‘ o message := (source, port, status, final)

(1) (cmnmaster, service(v2), enabled, True)
(2) (mdbmaster, service(v2), enabled, True)
. . (3) (mdbworkerl, service(v2), enabled, True)

(4) (ksworker, service(v2), enabled, True)
® (5) ACK (4)
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Constraint diffusion - out conflicts

cmnmaster  mdbmaster  mdbworkerl ksworkerl ~ novaworkerl @ 'ocal solve (SAT)

‘ message := (source, port, status, final)

(1) (cmnmaster, service(v2), enabled, True)
) (2) (mdbmaster, service(v2), enabled, True)
. . (3) (mdbworkerl, service(v2), enabled, True)
(4) (ksworker, service(v2), enabled, True)
® o (5) ACK (4)
o (6) ACK (3)
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Constraint diffusion - out conflicts

cmnmaster  mdbmaster  mdbworkerl ksworkerl ~ novaworkerl @ 'ocal solve (SAT)
‘ . message := (source, port, status, final)
@ (1) (cmnmaster, service(v2), enabled, True)
) (2) (mdbmaster, service(v2), enabled, True)
. s (3) (mdbworkerl, service(v2), enabled, True)
© (4) (ksworker, service(v2), enabled, True)
® (5) ACK (4)
. (6) ACK (3)
7) ACK (2
= (1) ACK (2)
(6)
)
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Constraint diffusion - out conflicts

cmnmaster  mdbmaster  mdbworkerl ksworkerl ~ novaworkerl @ 'ocal solve (SAT)
‘ . message := (source, port, status, final)
@ (1) (cmnmaster, service(v2), enabled, True)
) (2) (mdbmaster, service(v2), enabled, True)
. s (3) (mdbworkerl, service(v2), enabled, True)
© (4) (ksworker, service(v2), enabled, True)
® (5) ACK (4)
. (6) ACK (3)
) (7) ACK (2)
() (8) ACK (1)
)
(8)
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Constraint diffusion - out conflicts

cmnmaster  mdbmaster  mdbworkerl ksworkerl ~ novaworkerl @ 'ocal solve (SAT)
‘ . message := (source, port, status, final)
@ (1) (cmnmaster, service(v2), enabled, True)
) (2) (mdbmaster, service(v2), enabled, True)
. s (3) (mdbworkerl, service(v2), enabled, True)
© (4) (ksworker, service(v2), enabled, True)
® o (5) ACK (4)
() (6) ACK (3)
) (7) ACK (2)
(©) (8) ACK (1)
™
®) GLOBAL ACK
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Unsatisfiable models management in Ballet™

We first attempt solving the model. Two possible cases

SAT: A word is found, the process is like BALLET
UNSAT: We find the minimal set of unsatisfiable constraints using QuickXplain algorithm

In case of UNSAT, we backtrack the messages responsible of the local failure to the
DevOps, building an incidence tree

15



Unsatisfiable local models with

Ballet
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Constraint diffusion - w

conflicts
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mdbworkerl
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@ 'ocal solve (SAT)

message := (source, port, status, final)

(1) (cmnmaster, service(v2), enabled, True)
(2) (novaworkerl, service(v3), enabled, True)
(3) (mdbmaster, service(v2), enabled, True)
(4) (ksworker, service(v3), enabled, True)
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Constraint diffusion - w

conflicts

cmnmaster

mdbmaster

mdbworkerl

ksworkerl

novaworkerl
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@ 'ocal solve (SAT)
@ 'ocal solve (UNSAT)

message := (source, port, status, final)

(1) (cmnmaster, service(v2), enabled, True)

(2) (novaworkerl, service(v3), enabled, True)
(3) (mdbmaster, service(v2), enabled, True)

(4) (ksworker, service(v3), enabled, True)
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Constraint diffusion - w

conflicts

cmnmaster

mdbmaster

mdbworkerl

ksworkerl

novaworkerl

O] ‘

@ 'ocal solve (SAT) @ QuickXplain
@ 'ocal solve (UNSAT)

message := (source, port, status, final)

(1) (cmnmaster, service(v2), enabled, True)

(2) (novaworkerl, service(v3), enabled, True)
(3) (mdbmaster, service(v2), enabled, True)

(4) (ksworker, service(v3), enabled, True)
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Constraint diffusion -

conflicts

cmnmaster

mdbmaster

mdbworkerl

ksworkerl

novaworkerl
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@ 'ocal solve (SAT) @ QuickXplain
@ 'ocal solve (UNSAT)

message := (source, port, status, final)

(1) (cmnmaster, service(v2), enabled, True)
(2) (novaworkerl, service(v3), enabled, True)
(3) (mdbmaster, service(v2), enabled, True)
(4) (ksworker, service(v3), enabled, True)
(5) REFUSE caused by (3) and (4)
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Constraint diffusion -

conflicts
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mdbmaster

mdbworkerl

ksworkerl

novaworkerl
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@ 'ocal solve (UNSAT)

message := (source, port, status, final)

(1) (cmnmaster, service(v2), enabled, True)
(2) (novaworkerl, service(v3), enabled, True)
(3) (mdbmaster, service(v2), enabled, True)
(4) (ksworker, service(v3), enabled, True)
(5) REFUSE caused by (3) and (4)

(6) REFUSE caused by (3), (4) and (1)

(7) REFUSE caused by (3), (4) and (2)
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Constraint diffusion -

conflicts
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@ 'ocal solve (SAT) @ QuickXplain

@ 'ocal solve (UNSAT)

message := (source, port, status, final)

(1) (cmnmaster, service(v2), enabled, True)
(2) (novaworkerl, service(v3), enabled, True)
(3) (mdbmaster, service(v2), enabled, True)
(4) (ksworker, service(v3), enabled, True)
(5) REFUSE caused by (3) and (4)

(6) REFUSE caused by (3), (4) and (1)

(7) REFUSE caused by (3), (4) and (2)
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/& DevOps
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18



Evaluating Ballet™

= Does the UNSAT management introduce an overhead 7

Compare total time of planning phase in a satisfiable scenario (no conflict between goals)
and in an unsatisfiable scenario (conflicting goals)

Compare the maximum solving time (which might include running Qx) in a satisfiable
scenario and in an unsatisfiable scenario

Experiments run on Grid5000 (gros on Nancy site)

Run cases on multi-site Openstack case and on topological assemblies
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Evaluating Ballet™ on real use-case
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Evaluating Ballet™ on real use-case

o—| o g 5 e
common —@
haproxy | mariadb_master —.)—\ - keysto
apoxy|
)_ —.)— mariadb_worker
master
facts _
facts memcached
Site worker 1
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Site master Site worker n

‘ SAT-case time (o) ‘ UNSAT-case time (o)
8.4922s (1.29) 10.4161s (1.45)
3.85s (0.11) 3.2124s (0.86)

Planning time

Solving time

Table 1: Average time (for 10 runs, with standard deviation) of the full planning process, and average
time of the maximum local solving times 21



Evaluating Ballet™ on synthetic examples
e 1 _
[ -

_—o)— Lt | *———— D

_—o)- o | *—— D

e N
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(c)

(a) (b) () (e)

Figure 2: The five assembly topologies used in synthetic examples: (a) central-user (c-user), (b)
central-provider (c-provider), (c) linear (linear), (d) circular (circular), and (e) stratified (stratified).

= One instance of BALLET™ for each component
= Comparing two scenarios: a non-conflicting reconf. (SAT-case) & and conficting one

(UNSAT-case) ’



Evaluating Ballet™ on synthetic examples

topology | #components | initial states SAT-case goals UNSAT-case goals
1 user; user: running user: (state) running user: (state) running
cuser 15 providers provider;: running provider;: (state) running + (behavior) update | provider;: (state) uninstalled
c-provider 1 provider; user; : running user;: (state) running user;: (state) running
15 users provider: running provider: (state) running + (behavior) update | provider: (state) uninstalled
linear 1 provider; provider: running provider: (state) running + (behavior) update | provider: uninstalled
15 transformers | transformer;: running | transformer;: (state) running transformer;: (state) running
1 provider; provider: running provider: (state) running + (behavior) update | provider: uninstalled
circular | 15 transformers; | transformer;: running | transformer;: (state) running transformer;: (state) running
1 user user: running user: (state) running user: (state) running
1 provider provider: running provider: (state) running + (behavior) update | provider: uninstalled
stratified 15 mid-users mid-user;: running mid-user;: (state) running mid-user;: (state) running

1 user

user: running

user: (state) running

end-user: (state) running

Table 2: Testing scenarios for assembly topologies with goals for a satisfiable case (SAT-case), and an
unsatisfiable case (UNSAT-case)
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Evaluating Ballet™ on synthetic examples

topology SAT-case UNSAT-case
total time (o) | max solving time (o) || total time (o) | max solving time (o)
c-user 23.362s (3.79) 4.1970s (1.40) 19.8341s (0.91) 1.3841s (0.23)
c-provider || 2.0057s (0.30) 11.1907s (1.15) 9.7482s (0.91) 0.7192s (0.17)
linear | 0.7192s (0.12) 34.9178s (2.40) 0.6753s (0.11) 29.0932s (1.64)
circular 1.0587s (0.63) 14.0585s (0.52) 0.4983s (0.10) 1.9996s (0.61)
stratified || 1.8807s (0.25) 10.9338s (1.19) 0.7918s (0.14) 24.0026s (1.32)

Table 3: Average times (for 10 runs, with standard deviation) for the full planningtime alongside the

maximum local solving time for one component, in the SAT and UNSAT cases for each scenario on
topologies.
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Concluding remaks

We propose a solution for managing conflicting goals in cross-DevOps declarative
reconfigurations

The proposed solution does not introduce a time overhead

The presented work has been submitted to ICSME 2025 (Software Maintenance and
Evolution)

Propose reconfiguration options to satisfy a maximum of goals

Improve BALLET"'s usage of constraint solvers to manage larger models
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