
Correction in distributed systems, from usage to
reconfiguration
Progress and insights from my research journey

Jolan Philippe
January 24, 2025 - Seminaire STR

DiverSE team, IRISA (Univ. Rennes)

1

Hello world

a
a
Jolan Philippe, Postdoc
Université de Rennes, DiverSE Team
(λx.λy.x@y) Jolan.Philippe inria.fr

Topic of interest:
Correctness in ‚ Distributed computing

‚ Model driven engineering
‚ Reconfiguration

More details on: https://jolanphilippe.github.io/

2

https://jolanphilippe.github.io/

Disclaimer

Master
MIAGE

Master
Reasearch

PhD Postdoc Postdoc

2016 2017 2019 2022 2024

SSERL

All the work presented in this talk is from different
projects, contexts, and people.

3

Context: Using distributed infrastructure

node node node

node

Distributed
Architecture

‚ Different topologies
´ Ring
´ Star
´ Bus
´ etc.

+ –
x ÷

Application

Librairies / Frameworks ‚ Different architecture
´ Single Instr. Single Data
´ Single Instr. Multiple Data
´ Multiple Instr. Single Data
´ Multiple Instr. Multiple Data

Configurable

‚ Configuring architecture
´ Parametrized ressources
´ Services

‚ Configuring application
´ Allocated ressources
´ Features

ñ DevOps perspective
´ Continuous Integration
´ Continuous Deployement

4

Context: Using distributed infrastructure

node node node

node

Distributed
Architecture

‚ Different topologies
´ Ring
´ Star
´ Bus
´ etc.

+ –
x ÷

Application

Librairies / Frameworks ‚ Different architecture
´ Single Instr. Single Data
´ Single Instr. Multiple Data
´ Multiple Instr. Single Data
´ Multiple Instr. Multiple Data

Configurable

‚ Configuring architecture
´ Parametrized ressources
´ Services

‚ Configuring application
´ Allocated ressources
´ Features

ñ DevOps perspective
´ Continuous Integration
´ Continuous Deployement

4

Context: Using distributed infrastructure

node node node

node

Distributed
Architecture

‚ Different topologies
´ Ring
´ Star
´ Bus
´ etc.

+ –
x ÷

Application

Librairies / Frameworks

‚ Different architecture
´ Single Instr. Single Data
´ Single Instr. Multiple Data
´ Multiple Instr. Single Data
´ Multiple Instr. Multiple Data

Configurable

‚ Configuring architecture
´ Parametrized ressources
´ Services

‚ Configuring application
´ Allocated ressources
´ Features

ñ DevOps perspective
´ Continuous Integration
´ Continuous Deployement

4

Challenges

Developing and managing application on distributed architecture is
error-prone

Ensuring correctness
Goal: Concrete application meets expectations, at different level:

• The application itself
• The used libraries / frameworks
• The reconfiguration

Hint : Using formal approaches

5

Running example - A distributed model transformation engine

SOURCE
MODEL TRANSFORMATION

TARGET
MODELTRANSFORMATION

Pierre Marie

Radioactivity

likes likes

Pierre Marie

Radioactivity

Affinity

likes likes

rule copy (e:Element)
output:

new Element(content Ð e.content)

rule affinity (e1:Element, e2:Element)
guard:

query(e1, likes) X query(e2, likes) ‰ ∅
output:

new Affinity(from Ð e1, to Ð e2)

6

Running example - A distributed model transformation engine

SOURCE
MODEL TRANSFORMATION

TARGET
MODELTRANSFORMATION

Pierre Marie

Radioactivity

likes likes

Pierre Marie

Radioactivity

Affinity

likes likes

rule copy (e:Element)
output:

new Element(content Ð e.content)

rule affinity (e1:Element, e2:Element)
guard:

query(e1, likes) X query(e2, likes) ‰ ∅
output:

new Affinity(from Ð e1, to Ð e2)

6

Running example - A distributed model transformation engine

SOURCE
MODEL TRANSFORMATION

TARGET
MODELTRANSFORMATION

Pierre Marie

Radioactivity

likes likes

Pierre Marie

Radioactivity

Affinity

likes likes

rule copy (e:Element)
output:

new Element(content Ð e.content)

rule affinity (e1:Element, e2:Element)
guard:

query(e1, likes) X query(e2, likes) ‰ ∅
output:

new Affinity(from Ð e1, to Ð e2)
6

Running example - A distributed model transformation engine

SOURCE
MODEL

Chunk C2

of
SOURCE

Chunk C1

of
SOURCE

Chunk C3

of
SOURCE

TARGET
Elements
from C1

TARGET
Elements
from C2

TARGET
Elements
from C3

mapscatter broadcast
Trace

SRC-TARGET
Elements

Trace
SRC-TARGET

Elements

Trace
SRC-TARGET

Elements

TARGET
Links

from C1

TARGET
Links

from C2

TARGET
Links

from C3

map

TARGET
MODEL

reduce

7

Running example - A distributed model transformation engine

SOURCE
MODEL

Chunk C2

of
SOURCE

Chunk C1

of
SOURCE

Chunk C3

of
SOURCE

TARGET
Elements
from C1

TARGET
Elements
from C2

TARGET
Elements
from C3

map

scatter

broadcast
Trace

SRC-TARGET
Elements

Trace
SRC-TARGET

Elements

Trace
SRC-TARGET

Elements

TARGET
Links

from C1

TARGET
Links

from C2

TARGET
Links

from C3

map

TARGET
MODEL

reduce

7

Running example - A distributed model transformation engine

SOURCE
MODEL

Chunk C2

of
SOURCE

Chunk C1

of
SOURCE

Chunk C3

of
SOURCE

TARGET
Elements
from C1

TARGET
Elements
from C2

TARGET
Elements
from C3

mapscatter

broadcast
Trace

SRC-TARGET
Elements

Trace
SRC-TARGET

Elements

Trace
SRC-TARGET

Elements

TARGET
Links

from C1

TARGET
Links

from C2

TARGET
Links

from C3

map

TARGET
MODEL

reduce

7

Running example - A distributed model transformation engine

SOURCE
MODEL

Chunk C2

of
SOURCE

Chunk C1

of
SOURCE

Chunk C3

of
SOURCE

TARGET
Elements
from C1

TARGET
Elements
from C2

TARGET
Elements
from C3

mapscatter broadcast
Trace

SRC-TARGET
Elements

Trace
SRC-TARGET

Elements

Trace
SRC-TARGET

Elements

TARGET
Links

from C1

TARGET
Links

from C2

TARGET
Links

from C3

map

TARGET
MODEL

reduce

7

Running example - A distributed model transformation engine

SOURCE
MODEL

Chunk C2

of
SOURCE

Chunk C1

of
SOURCE

Chunk C3

of
SOURCE

TARGET
Elements
from C1

TARGET
Elements
from C2

TARGET
Elements
from C3

mapscatter broadcast
Trace

SRC-TARGET
Elements

Trace
SRC-TARGET

Elements

Trace
SRC-TARGET

Elements

TARGET
Links

from C1

TARGET
Links

from C2

TARGET
Links

from C3

map

TARGET
MODEL

reduce

7

Running example - A distributed model transformation engine

SOURCE
MODEL

Chunk C2

of
SOURCE

Chunk C1

of
SOURCE

Chunk C3

of
SOURCE

TARGET
Elements
from C1

TARGET
Elements
from C2

TARGET
Elements
from C3

mapscatter broadcast
Trace

SRC-TARGET
Elements

Trace
SRC-TARGET

Elements

Trace
SRC-TARGET

Elements

TARGET
Links

from C1

TARGET
Links

from C2

TARGET
Links

from C3

map

TARGET
MODEL

reduce

7

Outline

1. SparkTE, a correct-by-construction model transformation engine
• A configurable engine
• Running correct-by-construction transformations

2. Verifying frameworks for distributed calculation
• Skeletons and correctness
• A Coq library: SyDPaCC
• SyDPaCC for Spark

3. Coordinated reconfiguration
• Complex architecture for SparkTE
• Decentralized reconfiguration
• Ballet for reconfiguring
• Model-checking on Ballet

8

SparkTE - A configurable engine

Distributed model transformation engine

• Offers scalability
• Based on Apache Spark

• Popular framework for large-scale data processing
• Support for many paradigms
• Open-source

Highly configurable transformation

• Several possible execution semantics
• Multi-paradigm approach for querying input model
• Engineering design choices configuration

9

SparkTE - A configurable engine

SparkTE
as Spark job

♂

IN: ‚ input model
‚ transf. rules

OUT: ‚ output model

Spark cluster

runs on

Spark master

Spark workerSpark worker Spark worker

runs on

Configure
‚ memory
‚ num workers
‚ num threads
‚ etc.

Configure
‚ queries on input model
‚ semantics execution
‚ engineering choices

10

SparkTE - A configurable engine

SparkTE
as Spark job

♂

IN: ‚ input model
‚ transf. rules

OUT: ‚ output model

Spark cluster

runs on

Spark master

Spark workerSpark worker Spark worker

runs on

Configure
‚ memory
‚ num workers
‚ num threads
‚ etc.

Configure
‚ queries on input model
‚ semantics execution
‚ engineering choices

10

SparkTE - A configurable engine

SparkTE
as Spark job

♂

IN: ‚ input model
‚ transf. rules

OUT: ‚ output model

Spark cluster

runs on

Spark master

Spark workerSpark worker Spark worker

runs on

Configure
‚ memory
‚ num workers
‚ num threads
‚ etc.

Configure
‚ queries on input model
‚ semantics execution
‚ engineering choices

10

SparkTE - Correct-by-construction transformations

General approach for reasoning on model transformation

• Formalize transformation in the proof assistant Coq
• Refine the formalization for performances
• Extract a running engine

ñ Extract spec. into Scala code
ñ Run Scala code on Spark Cluster

11

Use of CoqTL for reasoning

The Coq proof assistant
• Designed for specifying semantics
• A proof assistant based calculus of

constructions and Hoare logic
• Extraction mechanism (to ML langs)

CoqTL
• DSL for rule-based model transformation
• Made for reasoning on model

transformations
• Can reason on the semantic of the

transformation
12

Correct-by-construction: Parallelizable CoqTL

Increase parallelization

1. Two distinct phases : instantiate and apply
• Defined as map-reduce phases

2. Iterate on rules instead of source patterns
• Avoid unnecessary computations

3. Iterate on trace for apply instead of source patterns
• Reuse intermediate results while everything is redefined

in CoqTL

spec cert effort
(loc) (loc) (man-days)

1. 69 484 10
2. 42 487 7
3. 69 520 4

CoqTL Parallelizable
CoqTL ScalaTE SparkTEdistribute

computationrefines
extraction

13

Correct-by-construction: Build SparkTE

CoqTL to SparkTE

1. Produce executable and maintainable code
• By hand: Object-oriented approach, with pure Scala functions
• With Scallina: Not maintainable, but certified

2. Distribute the computation
• Distribute data-structure
• Explicit communication operations (scatter, broadcast and reduce)

CoqTL Parallelizable
CoqTL ScalaTE SparkTEdistribute

computationrefines
extraction

14

Correct-by-construction

CoqTL
transformation

user theorems

CoqTL Parallelizable
CoqTL

Scala
transformation

ScalaTE SparkTE

certifies

input input

refines
extraction

rule translation

distribute
computation

input input

15

Correctness... really ?

SparkTE
as Spark job

♂

IN: ‚ input model
‚ transf. rules

OUT: ‚ output model

Spark master

Spark workerSpark worker Spark worker

runs on

CORRECT

CORRECT ?

16

Spark

Certify Spark
Spark defines program as

• Usage of high-order functions (e.g., map, reduce)
• Using a distributed implementation (i.e., skeletons)
• Considering the sequential implementation equivalent to distributed one

val instantiatedElements =

transformation.rules.map { rule => instantiate(model.elements, rule) }

No guarantee that the parallel implementation behaves the same as the sequential
implementation.

17

Coq to Spark

Coq specification Scala executable Spark programextract lists to
RDDs

extract

X
Extract Coq code into Spark program

• Formalize Spark’s distributed structure (i.e., RDD) in Coq
• Formalize computation on RDDs
• Prove the equivalence between function on lists and on RDDs

18

SyDPaCC for formalizing skeletons

SydPaCC

• Coq library for writing data-parallel program specification
• Code can be extracted into BSML (BSP for Ocaml)
• Ensure the correctness of the extracted parallel program
• Based on type equivalences (with composition)

Ap Bp

A B

fp

joinA joinB
f

19

Example - Equivalence of map

Ap Bp

A B

fp

joinA joinB
f

RDDrAs RDDrBs

ListrAs ListrBs

RDD.map

collect collect
List.map

Extending SyDPaCC

• Formalize RDDs
• Additional proofs

• RDD.map ˝ collect “ collect ˝ List.map
• Surjectivity of collect

20

Towards verified parallel computing with Coq and Spark

SparkTE
as Spark job

♂

IN: ‚ input model
‚ transf. rules

OUT: ‚ output model

Spark master

Spark workerSpark worker Spark worker

runs on CORRECT

21

SparkTE, as a “prototype”, architecture

SparkTE
as Spark job

♂

IN: ‚ input model
‚ transf. rules

OUT: ‚ output model

Spark master

Spark workerSpark worker Spark worker

runs on

22

SparkTE, as a “production tool”, architecture

SparkTE
as Spark job

♂

Spark master

Spark workerSpark worker Spark worker

runs on

IN: ‚ input model
‚ transf. rules

OUT: ‚ output model

We want to store the model within a database
NB: We could use HDFS files alongside Apache Hive

rules

Database
OUT

IN

Since the transformation is not necessarily “in-place”
we might want to store the input model and output model in different databases

Database DatabaseIN OUT

Because we handle very large model, we want distributed databases

Master
database

Master
database

IN OUT

Worker
database

... Worker
database

Worker
database

... Worker
database

We want more fine-grained management of Spark resources using Yarn

Yarn

23

SparkTE, as a “production tool”, architecture

SparkTE
as Spark job

♂

Spark master

Spark workerSpark worker Spark worker

runs on

IN: ‚ input model
‚ transf. rules

OUT: ‚ output model

We want to store the model within a database
NB: We could use HDFS files alongside Apache Hive

rules

Database
OUT

IN

Since the transformation is not necessarily “in-place”
we might want to store the input model and output model in different databases

Database DatabaseIN OUT

Because we handle very large model, we want distributed databases

Master
database

Master
database

IN OUT

Worker
database

... Worker
database

Worker
database

... Worker
database

We want more fine-grained management of Spark resources using Yarn

Yarn

23

SparkTE, as a “production tool”, architecture

SparkTE
as Spark job

♂

Spark master

Spark workerSpark worker Spark worker

runs on

IN: ‚ input model
‚ transf. rules

OUT: ‚ output model

We want to store the model within a database
NB: We could use HDFS files alongside Apache Hive

rules

Database
OUT

IN

Since the transformation is not necessarily “in-place”
we might want to store the input model and output model in different databases

Database DatabaseIN OUT

Because we handle very large model, we want distributed databases

Master
database

Master
database

IN OUT

Worker
database

... Worker
database

Worker
database

... Worker
database

We want more fine-grained management of Spark resources using Yarn

Yarn

23

SparkTE, as a “production tool”, architecture

SparkTE
as Spark job

♂

Spark master

Spark workerSpark worker Spark worker

runs on

IN: ‚ input model
‚ transf. rules

OUT: ‚ output model

We want to store the model within a database
NB: We could use HDFS files alongside Apache Hive

rules

Database
OUT

IN

Since the transformation is not necessarily “in-place”
we might want to store the input model and output model in different databases

Database DatabaseIN OUT

Because we handle very large model, we want distributed databases

Master
database

Master
database

IN OUT

Worker
database

... Worker
database

Worker
database

... Worker
database

We want more fine-grained management of Spark resources using Yarn

Yarn

23

SparkTE, as a “production tool”, architecture

SparkTE
as Spark job

♂

Spark master

Spark workerSpark worker Spark worker

runs on

IN: ‚ input model
‚ transf. rules

OUT: ‚ output model

We want to store the model within a database
NB: We could use HDFS files alongside Apache Hive

rules

Database
OUT

IN

Since the transformation is not necessarily “in-place”
we might want to store the input model and output model in different databases

Database DatabaseIN OUT

Because we handle very large model, we want distributed databases

Master
database

Master
database

IN OUT

Worker
database

... Worker
database

Worker
database

... Worker
database

We want more fine-grained management of Spark resources using Yarn

Yarn

23

SparkTE, as a “production tool”, architecture

SparkTE
as Spark job

♂

Spark master

Spark workerSpark worker Spark worker

runs on

IN: ‚ input model
‚ transf. rules

OUT: ‚ output model

We want to store the model within a database
NB: We could use HDFS files alongside Apache Hive

rules

Database
OUT

IN

Since the transformation is not necessarily “in-place”
we might want to store the input model and output model in different databases

Database DatabaseIN OUT

Because we handle very large model, we want distributed databases

Master
database

Master
database

IN OUT

Worker
database

... Worker
database

Worker
database

... Worker
database

We want more fine-grained management of Spark resources using Yarn

Yarn

23

SparkTE, as a “production tool”, architecture

SparkTE
as Spark job

♂

Spark master

Spark workerSpark worker Spark worker

runs on

IN: ‚ input model
‚ transf. rules

OUT: ‚ output model

We want to store the model within a database
NB: We could use HDFS files alongside Apache Hive

rules

Database
OUT

IN

Since the transformation is not necessarily “in-place”
we might want to store the input model and output model in different databases

Database DatabaseIN OUT

Because we handle very large model, we want distributed databases

Master
database

Master
database

IN OUT

Worker
database

... Worker
database

Worker
database

... Worker
database

We want more fine-grained management of Spark resources using Yarn

Yarn

23

SparkTE, as a “production tool”, architecture

SparkTE
as Spark job

♂

Spark master

Spark workerSpark worker Spark worker

runs on

IN: ‚ input model
‚ transf. rules

OUT: ‚ output model

We want to store the model within a database
NB: We could use HDFS files alongside Apache Hive

rules

Database
OUT

IN

Since the transformation is not necessarily “in-place”
we might want to store the input model and output model in different databases

Database DatabaseIN OUT

Because we handle very large model, we want distributed databases

Master
database

Master
database

IN OUT

Worker
database

... Worker
database

Worker
database

... Worker
database

We want more fine-grained management of Spark resources using Yarn

Yarn

23

Deploy and reconfigure SparkTE

Two approaches for reconfiguring distributed systems
Reconfiguration : Change of the state of entities by applying operations (e.g., deploy,
update, destroy)

• Centralized: single agent manages the reconfiguration with control components
• Decentralized: several agents manage the reconfiguration with control components

Component

Component

Component

Agent

Centralized approach

Component

Component

Component

Agent

Agent

Agent

(Fully) Decentralized approach
24

Decentralized approach

Strength

• Not a single point of failure
• Separation of information
• Scalability
• Allow geo-distribution

Challenges

• All agents must coordinate
• Operate communications

25

Reconfiguring distributed databases

SparkTE
as Spark job

♂

Spark master

Spark workerSpark worker Spark worker

runs on

rules

Master
database

Master
database

IN OUT

Worker
database

... Worker
database

Worker
database

... Worker
database

Yarn

How to reconfigure ?
Let’s have a look 26

Example: Deploy distributed databases

Master
database

Workeri
database

Database Master (DM) plan

1. Configure the service
2. Bootstrap the database
3. Start the service
4. Expose API

Database Workeri (DWi) plan

1. Configure the service
2. Register to master
3. Bootstrap the database
4. Start the service
5. Expose API

• Component granularity: DM ăă DWi

• Lifecycle granularity: DM(4) ăă DWi(2) (partial order)

27

Example: Update distributed databases

Master
database

Workeri
database

Database Master (DM) plan

1. Interrupt the service
2. Make the update
3. Start the service
4. Expose API

Database Workeri (DWi) plan

1. Interrupt the service
2. Make the update
3. Register to master
4. Start the service
5. Expose API

• Component granularity? Destroy DWi ăă Update DM ăă Deploy DWi

• Lifecycle granularity: DWi(1) ăă DM(1) & DM(4) ăă DWi(3)

28

Ballet for decentralized reconfiguration

Front Front

Gateway Gateway Gateway

Planner Planner Planner

Executor Executor Executor

♂ ♀

goals goals goals

reconf.
goals

reconf.
goals

RP1 RPi RPj

Node1 Nodei Nodej

Figure 1: Ballet overview

• Decentralized tool (one instance
of Ballet on each node)

• Declarative input as goals
• Reconfiguration with automatic

planning and efficient execution

Gateway
Global knowledge building of
reconfiguration goals

Planner
Decentralized inference of
reconfiguration plans (RPs)

Executor
Coordinated execution of RP 29

Specify lifecycle and dependencies for control components

Lifecycle and dependencies

• Places: milestones of the reconfiguration

• Behaviors: interface for executable actions

• Transitions: concrete actions between places,
associated to behaviors

• Ports: Provide (resp. use) information to
(resp. from) external components

˝ Ports are bounded to places and transitions

Exemple: Database for SparkTE
Lifecycle representation of a MariaDB database
with 5 executable behaviors: deploy, interrupt,
pause, update, and uninstall

initiated

configured

restarted

registered

mdbmaster:MariaDB_master

deployed

interrupted

deploy
interrupt
pause
update
uninstall

service

common

haproxy

bootstrapped

30

Usage of Ballet : goals

Reconfiguration goals
Declarative language for defining
reconfiguration goals
• Behavior goal: Specify a behavior

that must be executed
• Port goal: Specify a port status

(active, inactive)
• State goal: Specify a component

state (specific, running, initial)

Listing 1: Language to define reconfiguration goals
for DevOps usage

<goa l s> ::“ b e h a v i o r s : <b h v r l i s t >
p o r t s : <p o r t l i s t >
components : <c o m p l i s t>

<b h v r l i s t > ::“ . . .
<bhvr i t em> ::“ − f o r a l l : <bhvr name>

| − component : <comp name>
be ha v i o r : <bhvr name>

<p o r t l i s t > ::“ . . .
<p o r t i t e m> ::“ − f o r a l l : <p o r t s t a t u s >

| − component : <comp name>
por t : <port name>
s t a t u s : <p o r t s t a t u s >

<c o m p l i s t> ::“ . . .
<comp item> ::“ − f o r a l l : <comp status>

| − component : <comp name>
s t a t u s : <comp status>

31

Assembly of components

initiated

configured

bootstrapped

restarted

registered

mdbmaster:MariaDB_master

deployed

interrupted

deploy
interrupt
pause
update
uninstall

service

initiated

configured

bootstrapped

restarted

registered

mdbworker0:MariaDB_worker

deployed

interrupted

deploy
interrupt
pause
update
uninstall

service

master

common

haproxy

common

haproxy

Assembly of MariaDB master and worker components
Similar to synchronous Petri nets 32

Concerto-D language

A simple language to interact with components - i.e., write a reconfiguration plan

• Add/remove a component instance to the current assembly
• Connect/disconnect two component instances with compatible ports
• Push behavior to the behavior queue on a component instance

pushB(idC , bhv)
• Wait for a given component instance to execute a behavior

wait(idC , bhv)

33

Execution example

pushB(mdbmaster, interrupt)
pushB(mdbmaster, update)
pushB(mdbmaster, deploy)

pushB(mdbworker0, interrupt)
pushB(mdbworker0, update)
wait(mdbmaster, deploy)
pushB(mdbworker0, deploy)

queue: Ø queue: Ø

34

Execution example

queue: queue:

pushB(mdbmaster, interrupt)
pushB(mdbmaster, update)
pushB(mdbmaster, deploy)

pushB(mdbworker0, interrupt)
pushB(mdbworker0, update)
wait(mdbmaster, deploy)
pushB(mdbworker0, deploy)

35

Execution example

queue: queue:

pushB(mdbmaster, interrupt)
pushB(mdbmaster, update)
pushB(mdbmaster, deploy)

pushB(mdbworker0, interrupt)
pushB(mdbworker0, update)
wait(mdbmaster, deploy)
pushB(mdbworker0, deploy)

36

Execution example

queue: queue:

pushB(mdbmaster, interrupt)
pushB(mdbmaster, update)
pushB(mdbmaster, deploy)

pushB(mdbworker0, interrupt)
pushB(mdbworker0, update)
wait(mdbmaster, deploy)
pushB(mdbworker0, deploy)

worker master’s
service deactivated

37

Execution example

queue: queue: Ø

pushB(mdbmaster, interrupt)
pushB(mdbmaster, update)
pushB(mdbmaster, deploy)

pushB(mdbworker0, interrupt)
pushB(mdbworker0, update)
wait(mdbmaster, deploy)
pushB(mdbworker0, deploy)

master’s service
deactivated

38

Execution example

queue: queue: Ø

pushB(mdbmaster, interrupt)
pushB(mdbmaster, update)
pushB(mdbmaster, deploy)

pushB(mdbworker0, interrupt)
pushB(mdbworker0, update)
wait(mdbmaster, deploy)
pushB(mdbworker0, deploy)

39

Execution example

queue: queue: Ø

pushB(mdbmaster, interrupt)
pushB(mdbmaster, update)
pushB(mdbmaster, deploy)

pushB(mdbworker0, interrupt)
pushB(mdbworker0, update)
wait(mdbmaster, deploy)
pushB(mdbworker0, deploy)

40

Execution example

queue: Ø queue: Ø

pushB(mdbmaster, interrupt)
pushB(mdbmaster, update)
pushB(mdbmaster, deploy)

pushB(mdbworker0, interrupt)
pushB(mdbworker0, update)
wait(mdbmaster, deploy)
pushB(mdbworker0, deploy)

master’s service
activated

41

Execution example

queue: Ø queue:

pushB(mdbmaster, interrupt)
pushB(mdbmaster, update)
pushB(mdbmaster, deploy)

pushB(mdbworker0, interrupt)
pushB(mdbworker0, update)
wait(mdbmaster, deploy)
pushB(mdbworker0, deploy)

42

Execution example

queue: Ø queue: Ø

pushB(mdbmaster, interrupt)
pushB(mdbmaster, update)
pushB(mdbmaster, deploy)

pushB(mdbworker0, interrupt)
pushB(mdbworker0, update)
wait(mdbmaster, deploy)
pushB(mdbworker0, deploy)

worker master’s
service activated

43

Without the wait ? Failing execution

pushB(mdbmaster, interrupt)
pushB(mdbmaster, update)
pushB(mdbmaster, deploy)

pushB(mdbworker0, interrupt)
pushB(mdbworker0, update)
pushB(mdbworker0, deploy)

queue: Ø queue: Ø

44

Without the wait ? Failing execution

pushB(mdbmaster, interrupt)
pushB(mdbmaster, update)
pushB(mdbmaster, deploy)

pushB(mdbworker0, interrupt)
pushB(mdbworker0, update)
pushB(mdbworker0, deploy)

queue: queue:

45

Without the wait ? Failing execution

pushB(mdbmaster, interrupt)
pushB(mdbmaster, update)
pushB(mdbmaster, deploy)

pushB(mdbworker0, interrupt)
pushB(mdbworker0, update)
pushB(mdbworker0, deploy)

queue: queue:

46

Without the wait ? Failing execution

pushB(mdbmaster, interrupt)
pushB(mdbmaster, update)
pushB(mdbmaster, deploy)

pushB(mdbworker0, interrupt)
pushB(mdbworker0, update)
pushB(mdbworker0, deploy)

queue: queue:

47

Without the wait ? Failing execution

pushB(mdbmaster, interrupt)
pushB(mdbmaster, update)
pushB(mdbmaster, deploy)

pushB(mdbworker0, interrupt)
pushB(mdbworker0, update)
pushB(mdbworker0, deploy)

queue: queue: Ø

48

Without the wait ? Failing execution

pushB(mdbmaster, interrupt)
pushB(mdbmaster, update)
pushB(mdbmaster, deploy)

pushB(mdbworker0, interrupt)
pushB(mdbworker0, update)
pushB(mdbworker0, deploy)

queue: queue: Ø

Deadlock

49

Planning Concerto-D programs

Decentralized planner

• Input: goals and lifecycle
• Output: a reconfiguration plan
• On each node, iterative resolution :

• Using SAT solver for intermediate plans
• Diffusing port constraints, to enrich neighborhood constraint models

Planner

goals

RPi

‚ Sat solver ensure validity of the Reconfiguration Plan (RP)
‚ If the model is unsat, we find the MUS (Minimum Unsat Satisfiability)
for explainability, and return error to user

50

Verify Ballet’s execution ?

Planner Planner

Executor Executor

goals goals

Model
checker (LTL)

RPi + local assembly

RPi RPj

validate validate

Model checker

• Formalized Ballet’s executor
within Maude

• Model checking with linear
temporal logic (LTL)

• Pros: A first step for verifying
properties

• Cons: Works with all plans and
full assembly

• Cons: Current formalization
does not scale for realistic
applications

51

Integrate Ballet - Infrastructure as code

Infrastructure as code (IaC)
Infrastructure as Code (IaC) is the practice of defining and managing infrastructure using code
(written in configuration languages). Tools then take this code and automatically deploy the
infrastructure as specified.

♂♀
DevOps

Configuration
language

Target
Infrastructure

Current
Infrastructure

State Reconciliation
‚ Diff
‚ Plan
‚ Execute

New
Infrastructure

use describes

input

output

52

Integrate Ballet - Control fleet of CPS

database system listener1 sensor1

listenern sensorn

... ...

db

db service

sys

sys service

2

2

node1

node2

node2`1

node2`n

53

Conclusion

SparkTE

• A configurable model transformation engine
• A correct by construction engine on top Spark

Verifying parallel implementation with SyDPaCC

• Extended a Coq library for verifying skeletons
• Formalized a subpart of Spark

Reconfiguration with Ballet

• Declarative tool for decentralized reconfiguration
• Decentralized planning with SAT solver
• Decentralized execution of plans
• Premises of model checking

54

Perspectives

Verifying Spark

• Formalize distribution process of Spark RDDs calculation
• More support for Spark functions
• Implements additional skeletons in Spark

Model checking for Ballet

• Define additional properties (e.g., safety)
• Use partial order reduction techniques for reducing state-space exploration
• Decentralized checking ? by composition + distribution

Distributed systems

• Energetic optimization (e.g., placement problem)
• Energetic model for configuration space

55

References

[1] Jolan Philippe. Contribution to the Analysis of the Design-Space of a Distributed
Transformation Engine. Ph.D thesis. IMT Atlantique, 2022.

[2] Jolan Philippe, Massimo Tisi, Hélène Coullon, and Gerson Sunyé. Executing Certified Model
Transformations on Apache Spark. In 14th ACM SIGPLAN International Conference on Software
Language Engineering (SLE), pages 36–48. ACM, 2021.

[3] Frédéric Loulergue, and Jolan Philippe. Towards Verified Scalable Parallel Computing with Coq
and Spark. In 25th ACM International Workshop on Formal Techniques for Java-like Programs
(FTfJP), pages 11–17. ACM, 2023.

[4] Jolan Philippe, Antoine Omond, Hélène Coullon, Charles Prud’Homme, and Issam Räıs. Fast
Choreography of Cross-DevOps Reconfiguration with Ballet: A Multi-Site OpenStack Case Study.
In IEEE International Conference on Software Analysis, Evolution and Reengineering (SANER).
IEEE, 2024.

[5] Farid Arfi, Hélène Coullon, Frédéric Loulergue, Jolan Philippe, and Simon Robillard. A Maude
Formalization of the Distributed Reconfiguration Language Concerto-D. In 17th Interaction and
Concurrency Experience (ICE). EPTCS 2024.

56

Backup

SparkTE - Configuration space overview

57

SparkTE Performances

58

Ballet performances on real use-case

mariadb_master

common

haproxy mariadb_worker

common

haproxy

master

mariadb

keystone

glance

nova

neutron

mariadb

keystone

keystone

mariadb
keystone

mariadb

mariadb_worker

Master node

Worker node 1 Neutron node 1

Nova node 1

Site 1
Site n
Worker node n, Nova node n,
Neutron node n

59

Ballet performances on real use-case

Sc. # Sites Ballet Muse GainPlanning Execution Total
D

ep
lo

y

1 1.69s 306.02s 307.71s 536.57s 42.7%
2 1.78s 306.09s 307.86s 536.69s 42.6%
5 1.77s 306.19s 307.97s 537.09s 42.7%
10 2.02s 306.14s 308.19s 538.13s 42.7%

U
pd

at
e 1 3.36s 416.84s 420.20s 555.56s 24.4%
2 4.39s 416.92s 421.31s 555.70s 24.2%
5 6.05s 417.17s 423.22s 556.08s 24.0%
10 5.97s 417.46s 423.43s 556.77s 24.0%

Table 1: Comparison of time for planning and executing a deployment and an update of the
MariaDB master instance with Ballet and Muse. 60

CP Model

• pB, Π, C, sinit , Sgoal q

• si`1 “ incΠrsi srbi s, @i P 1..m
• pb, B, ą, 0q

• statuspp, sm`1q “ Γp

where
Π an automaton with C costs
B a sequence of m behaviors
Γp P tactive, inactiveu i.e. t ✓, ˆ u

b P t interrupt, deploy, pause, update,
uninstallu

61

Communication protocol

- update mariadb_master
- all running

62

Communication protocol

local cp

63

Communication protocol

64

Communication protocol

local cp

65

Communication protocol

66

Communication protocol

local cp

local cp

67

Communication protocol

68

Communication protocol

local cp

local cp

local cp

69

Communication protocol

70

Communication protocol

local cp

local cp

71

Communication protocol

72

Communication protocol

73

Communication protocol

74

Communication protocol

75

Communication protocol

76

SparkTE - Configuration space overview

77

SparkTE Performances

78

Ballet performances on real use-case

mariadb_master

common

haproxy mariadb_worker

common

haproxy

master

mariadb

keystone

glance

nova

neutron

mariadb

keystone

keystone

mariadb
keystone

mariadb

mariadb_worker

Master node

Worker node 1 Neutron node 1

Nova node 1

Site 1
Site n
Worker node n, Nova node n,
Neutron node n

79

Ballet performances on real use-case

Sc. # Sites Ballet Muse GainPlanning Execution Total
D

ep
lo

y

1 1.69s 306.02s 307.71s 536.57s 42.7%
2 1.78s 306.09s 307.86s 536.69s 42.6%
5 1.77s 306.19s 307.97s 537.09s 42.7%
10 2.02s 306.14s 308.19s 538.13s 42.7%

U
pd

at
e 1 3.36s 416.84s 420.20s 555.56s 24.4%
2 4.39s 416.92s 421.31s 555.70s 24.2%
5 6.05s 417.17s 423.22s 556.08s 24.0%
10 5.97s 417.46s 423.43s 556.77s 24.0%

Table 2: Comparison of time for planning and executing a deployment and an update of the
MariaDB master instance with Ballet and Muse. 80

CP Model

1

2

3

4

5

interrupt
(1)

pause
(1)

update
(1)

uninstall
(1)

deploy
(5)

deploy
(4)

deploy
(3) state 1 2 3 4 5

common ✓ ✓ ˆ ˆ ˆ

haproxy ˆ ˆ ✓ ˆ ˆ

service ✓ ˆ ˆ ˆ ˆ

Figure 2: Automaton representation of Mariadb master
component’s life cycle with its matrix for ports statuses.

• pB, Π, C, sinit , Sgoal q

• si`1 “ incΠrsi srbi s, @i P 1..m
• pb, B, ą, 0q

• statuspp, sm`1q “ Γp

where
Π an automaton with C costs
B a sequence of m behaviors
Γp P tactive, inactiveu i.e. t ✓, ˆ u

b P t interrupt, deploy, pause, update,
uninstallu

81

Communication protocol

- update mariadb_master
- all running

82

Communication protocol

local cp

83

Communication protocol

84

Communication protocol

local cp

85

Communication protocol

86

Communication protocol

local cp

local cp

87

Communication protocol

88

Communication protocol

local cp

local cp

local cp

89

Communication protocol

90

Communication protocol

local cp

local cp

91

Communication protocol

92

Communication protocol

93

Communication protocol

94

Communication protocol

95

Communication protocol

96

	Backup

