
Fast Choreography of Cross-DevOps Reconfiguration with
Ballet
Multi-Site OpenStack Case Study

Jolan Philippe, Hélène Coullon, Antoine Omond, Charles Prud’Homme, Issam Räıs
April 8th, 2024

STACK, IMT Atlantique
SeMaFoR project

1

DevOps deployment and reconfiguration

Responsible for
development

Responsible for
operations

Run
tests

Package
app

Build
image
Docker

Push
artifact
to repo

Deploy
to server

Continuous
integration

Continuous
deployment+

DevOps team

ñ Continuous deployment then reconfiguration

2

Cross-DevOps reconfiguration

Responsible for
development of A

Responsible for
operations on A

Run
tests
on A

Package
A

Build
image
for A

Push A
to repo Deploy A

DevOps team

Responsible for
development of B

which uses A

Responsible for
operations on B

(using A)

Run
tests
on B

Package
B

Build
image
for B

Push B
to repo

Deploy B
(after A?)

DevOps team

3

Case study: Deploy or update OpenStack with Galera cluster of MariaDB

mariadb_master

common

haproxy mariadb_worker

common

haproxy

master

mariadb

keystone

glance

nova

neutron

mariadb

keystone

keystone

mariadb
keystone

mariadb

mariadb_worker

Master node

Worker node 1 Neutron node 1

Nova node 1

Site 1
Site n
Worker node n, Nova node n,
Neutron node n

Figure 1: Assembly of a multi-site OpenStack with a Galera cluster of distributed MariaDB databases.

4

Approach

Naive solution
Using a centralized tool on top of all DevOps teams is not suitable for scale and fault
tolerance reasons.

Decentralized solution
Make a plan for each DevOps team, and execute them concurrently.

Muse (Sokolowski et. al.) covers cross-DevOps decentralized reconfiguration with planning,
but inefficient because of the fixed life cycles (i.e., on-off mode for resources).

5

Ballet overview

Front Front

Gateway Gateway Gateway

Planner Planner Planner

Executor Executor Executor

DevOps DevOps♂♀

goals goals goals

assembly;
inventory;

local goals

assembly;
inventory;

local goals

RP1 RPi RPj

Node1 Nodei Nodej
Figure 2: Ballet overview

• Decentralized tool (one instance
of Ballet on each node)

• Declarative input
• Automatic planning
• Efficient reconfiguration

Gateway
Global knowledge building of
reconfiguration goals

Planner
Decentralized inference of
reconfiguration plans (RPs)

Executor
Coordinated execution of RP 6

Ballet’s usage

Responsible for
development of A
and A's life cycle

Responsible for
operations on A

... Deploy / update A
with Ballet

DevOps team

Responsible for
development of B
and B's life cycle

Responsible for
operations on B

(using A)

DevOps team

... Deploy / update B
with Ballet

Collaborative
using network

7

Developers’ concern

Life-cycle and ports
Simple language to define component
• Places: milestones in reconfiguration

• Transitions: reconfiguration actions (can be
concurrent) associated to a general behavior

• Ports: dependencies in the reconfiguration
process between components

initiated

configured

restarted

registered

mdbmaster:MariaDB_master

deployed

interrupted

deploy
interrupt
pause
update
uninstall

service

common

haproxy

bootstrapped

Figure 3: Visual representation of a component for
MariaDB 8

Developer’s concern

Listing 1: Control component MariaDB master in Python

1 class MariaDB_Master (Component):
2 def create (self):
3 self. places = [" initiated ", " configured ", " bootstrapped ", " restarted ",
4 " registered ", " deployed ", " interrupted "]
5 self. transitions = {
6 " configure0 ": (" initiated ", " configured ", " deploy ", self. configure0),
7 " configure1 ": (" initiated ", " configured ", " deploy ", self. configure1),
8 " configure2 ": (" initiated ", " configured ", " deploy ", self. configure2),
9 ...

10 }
11 self. dependencies = {
12 " service ": (DepType .PROVIDE , [" deployed "]) ,
13 " haproxy ": (DepType .USE , [" bootstrapped "," restarted "]) ,
14 ...
15 }
16 self. initial_place = 'initiated '
17 self. running_place = 'deployed '
18

19 def configure0 (self):
20 # concrete actions 9

DevOps’ concern

Reconfiguration goals
Declarative language for defining
reconfiguration goals
• Behavior goal: Specify a behavior that

must be executed

• Port goal: Specify a port status (active,
inactive)

• State goal: Specify a component state
(specific, running, initial)

Case study reconfiguration
behaviors:

- component: mariadb master
behavior: update

components:
- forall: running

Listing 2: Language to define reconfiguration goals
for DevOps usage

<goa l s> ::“ b e h a v i o r s : <b h v r l i s t >
p o r t s : <p o r t l i s t >
components : <c o m p l i s t>

<b h v r l i s t > ::“ . . .
<bhvr i t em> ::“ − f o r a l l : <bhvr name>

| − component : <comp name>
be ha v i o r : <bhvr name>

<p o r t l i s t > ::“ . . .
<p o r t i t e m> ::“ − f o r a l l : <p o r t s t a t u s >

| − component : <comp name>
por t : <port name>
s t a t u s : <p o r t s t a t u s >

<c o m p l i s t> ::“ . . .
<comp item> ::“ − f o r a l l : <comp status>

| − component : <comp name>
s t a t u s : <comp status>

10

Ballet execution

Front Front

Gateway Gateway Gateway

avoided direct
communications

Planner Planner Planner

Executor Executor Executor

DevOps DevOps♂♀

goals goals goals

RP1 RPi RPj

Node1 Nodei Nodej

1Goal submission

2 Build global knowledge

3 Decentralized planning

4 Coordinated execution

Figure 4: Ballet execution 11

Ballet execution

Outline
For clarity reasons:

1. (Skip gateway since there is no scientific challenge)
2. Start with the execution
3. Followed by the planning

12

Execution language: Concerto-D (Antoine Omond’s thesis)

Reconfiguration programs are plans which can

1. Create assemblies of components (software system)
2. Make this assembly evolve at runtime
3. Interact with the life cycle of components

The used language propose instructions for:

Add/remove a component instance to the current assembly
Connect/disconnect two component instances with compatible ports
Push behavior to the behavior queue on a component instance
Wait for a given component instance to execute a behavior

13

Decentralized execution: Concerto-D

mariadb master’s RP

pushB(master, interrupt)
pushB(master, update)
pushB(master, deploy)

mariadb worker0’s RP

pushB(worker, interrupt)
pushB(worker, update)
wait(master, interrupt)
pushB(worker, deploy)

initiated

configured

restarted

registered

mariadbmaster:MariaDB_master

deployed

interrupted

deploy
interrupt
pause
update
uninstall

service

initiated

configured

restarted

registered

deployed

interrupted

deploy
interrupt
pause
update
uninstall

service

haproxy

common

master

haproxy

common

mariadbworker0:MariaDB_worker

bootstrappedbootstrapped

behaviors: behaviors:

14

Decentralized execution: Concerto-D

mariadb master’s RP

pushB(master, interrupt)
pushB(master, update)
pushB(master, deploy)

mariadb worker0’s RP

pushB(worker, interrupt)
pushB(worker, update)
wait(master, interrupt)
pushB(worker, deploy)

initiated

configured

restarted

registered

mariadbmaster:MariaDB_master

deployed

interrupted

deploy
interrupt
pause
update
uninstall

service

initiated

configured

restarted

registered

deployed

interrupted

deploy
interrupt
pause
update
uninstall

service

haproxy

common

master

haproxy

common

mariadbworker0:MariaDB_worker

bootstrappedbootstrapped

behaviors: behaviors:

15

Decentralized execution: Concerto-D

mariadb master’s RP

pushB(master, interrupt)
pushB(master, update)
pushB(master, deploy)

mariadb worker0’s RP

pushB(worker, interrupt)
pushB(worker, update)
wait(master, interrupt)
pushB(worker, deploy)

initiated

configured

restarted

registered

mariadbmaster:MariaDB_master

deployed

interrupted

deploy
interrupt
pause
update
uninstall

service

initiated

configured

restarted

registered

deployed

interrupted

deploy
interrupt
pause
update
uninstall

service

haproxy

common

master

haproxy

common

mariadbworker0:MariaDB_worker

bootstrappedbootstrapped

behaviors:

behaviors:

behaviors:

16

Failing example

mariadb master’s RP

pushB(master, interrupt)
pushB(master, update)
pushB(master, deploy)

mariadb worker0’s RP

No wait master’s interrupt

pushB(worker, interrupt)
pushB(worker, update)
pushB(worker, deploy)

initiated

configured

restarted

registered

mariadbmaster:MariaDB_master

deployed

interrupted

deploy
interrupt
pause
update
uninstall

service

initiated

configured

restarted

registered

deployed

interrupted

deploy
interrupt
pause
update
uninstall

service

haproxy

common

master

haproxy

common

mariadbworker0:MariaDB_worker

bootstrappedbootstrapped

behaviors: behaviors:

17

Approach for Ballet’s planner

Main challenge: Infer synchronization barriers (i.e., wait instructions)

Local resolution

• Purpose: Find a sequence of behavior to execute
• Hint: Constraint programming approach

Constraint propagation

• Purpose: Inferring wait instructions (i.e., synchro. barrier)
• Hint: Propagation based on Gossip algorithm
• Hint: Consensus using Paxos-like approach

18

CP for local planning: Find a word in an automaton

initiated

configured

restarted

registered

mdbmaster:MariaDB_master

deployed

interrupted

deploy
interrupt
pause
update
uninstall

service

common

haproxy

bootstrapped

Figure 5: MariaDB master
control component

1

2

3

4

5

interrupt
(1)

pause
(1)

update
(1)

uninstall
(1)

deploy
(5)

deploy
(4)

deploy
(3) state 1 2 3 4 5

common ✓ ✓ ˆ ˆ ˆ

haproxy ˆ ˆ ✓ ˆ ˆ

service ✓ ˆ ˆ ˆ ˆ

Figure 6: Automaton representation of Mariadb master
component’s life cycle with its matrix for ports statuses.

19

Message inference

Case study reconfiguration
behaviors:

- component: mariadb master
behavior: update

components:
- forall: running

CP Result

Sequence := [interrupt, update, deploy]
States := [1, 2, 4, 1]

Ports statuses :=
common: [✓, ✓, ˆ, ✓]
haproxy: [ˆ, ˆ, ˆ, ˆ]
service: [✓, ˆ, ˆ, ✓]

1

2

3

4

5

interrupt
(1)

pause
(1)

update
(1)

uninstall
(1)

deploy
(5)

deploy
(4)

deploy
(3)

• “Components using master’s service must disconnect until interrupt ends”
ñ Message: (master, service, disconnect, interrupt) 20

Constraint propagation

mariadb_master

common

haproxy mariadb_worker

common

haproxy

master

mariadb

keystone

glance

nova

neutron

mariadb

keystone

keystone

mariadb
keystone

mariadb

mariadb_worker

Master node

Worker node 1 Neutron node 1

Nova node 1

Site 1
Site n
Worker node n, Nova node n,
Neutron node n

Propagated constraint (gossip + consensus) from mariadb master for master’s service

• mariadb master ñ mariadb worker
• mariadb worker ñ keystone; glance; nova; neutron
• keystone ñ glance; nova; neutron 21

Enriched CP Model

Enriched CP problem

• Enriched automaton with synchronization instruction
• Additional constraint to have synchro. barrier in local plan

1

2

3

4

5

interrupt

pause

update

uninstall

deploy

deploy

deploy

wait master interrupt

wait master interrupt

state 1 2 3 4 5

common ✓ ✓ ˆ ˆ ˆ

haproxy ˆ ˆ ✓ ˆ ˆ

master ✓ ✓ ✓ ˆ ˆ

service ✓ ˆ ˆ ˆ ˆ

Figure 7: Enriched automaton representation of Mariadb worker .

Figure 8: Caption

22

Experiments

Deployment and update of OpenStack with Galera cluster of MariaDB with n P r1, 2, 5, 10s

sites, that is a total of 7 ` 11 ˚ n components.

Metric of interest

• For both the planner and the executor: Execution time
• For the planner: Inferred constraints, inferred actions, number of communications

Setup

• Results on 1 ` 3 ˚ n nodes Gros (Nancy) of Grid’5000
• Comparison to Muse (decentralized reconfiguration)
• Reproducible example on Grid’5000

23

Experimental results

Sc. # Sites Ballet Muse GainPlanning Execution Total
D

ep
lo

y

1 1.69s 306.02s 307.71s 536.57s 42.7%
2 1.78s 306.09s 307.86s 536.69s 42.6%
5 1.77s 306.19s 307.97s 537.09s 42.7%
10 2.02s 306.14s 308.19s 538.13s 42.7%

U
pd

at
e 1 3.36s 416.84s 420.20s 555.56s 24.4%
2 4.39s 416.92s 421.31s 555.70s 24.2%
5 6.05s 417.17s 423.22s 556.08s 24.0%
10 5.97s 417.46s 423.43s 556.77s 24.0%

Table 1: Comparison of time for planning and executing a deployment and an update of the
MariaDB master instance with Ballet and Muse. 24

Experimental results

Sc. #Sites #Constraints #Instructions #Messages

D
ep

lo
y

n 7 ` 11 ˚ n 7 ` 11 ˚ n 0
1 18 18 0
2 29 29 0
5 62 62 0
10 117 117 0

U
pd

at
e

n 3 ` 20 ˚ n 8 ` 11 ˚ n 9 ˚ n
1 23 19 9
2 43 30 18
5 103 63 45
10 203 118 90

Table 2: Results of the planning phase for the deploy and update scenario when varying the number of
Mariadb workers in a Galera cluster.

25

Conclusion

Contributions

• Ballet as a DevOps reconfiguration tool [1] (Ballet code and benchmarks available [2])
• Infer reconfiguration actions
• Efficient execution of actions

Target applications

• Multi-site OpenStack
• CPS with sensors

Perspectives

• Extend our constraint propagation to other problems (e.g., placement or reconfiguration)
• Formalization and reasoning for correctness
• Integrate planner and executor solutions to SeMaFoR solution

[1] Jolan Philippe, Antoine Omond, Hélène Coullon, Charles Prud’Homme, Issam Räıs. Fast Choreography of Cross-DevOps Reconfiguration with Ballet: A Multi-Site OpenStack
Case Study. SANER 2024 - IEEE International Conference on Software Analysis, Evolution and Reengineering, Mar 2024, Rovaniemi, Finland.
[2] https://zenodo.org/records/10472116

26

https://zenodo.org/records/10472116

Backup

CP Model

1

2

3

4

5

interrupt
(1)

pause
(1)

update
(1)

uninstall
(1)

deploy
(5)

deploy
(4)

deploy
(3) state 1 2 3 4 5

common ✓ ✓ ˆ ˆ ˆ

haproxy ˆ ˆ ✓ ˆ ˆ

service ✓ ˆ ˆ ˆ ˆ

Figure 9: Automaton representation of Mariadb master
component’s life cycle with its matrix for ports statuses.

• RegularpB, Π, sinit , Sgoal q

• si`1 “ incΠrsi srbi s, @i P 1..m
• Countpb, B, ą, 0q

• statuspp, sm`1q “ Γp

where
Γp P tactive, inactiveu

ci “ costpsi , bi q, @i P 1..m
C “ Sumprci | i P 1..msq

27

Planner time

#Sites Solving Communications Total
1 1.58 (0.06) 1.78 (0.44) 3.36 (0.43)
2 1.53 (0.13) 2.85 (1.62) 4.39 (1.72)
5 1.59 (0.06) 4.47 (0.92) 6.05 (0.91)
10 2.61 (0.17) 0.26 (0.01) 5.97 (0.63)

Table 3: Average duration in seconds (and standard deviation) to calculate the plans for the update
scenario.

28

Gossip + Protocol

https://docs.google.com/presentation/d/18asPwHJ4HOZqAlmQqLEI5V-hX38_
robjgia62bNtrig/edit?usp=sharing

29

https://docs.google.com/presentation/d/18asPwHJ4HOZqAlmQqLEI5V-hX38_robjgia62bNtrig/edit?usp=sharing
https://docs.google.com/presentation/d/18asPwHJ4HOZqAlmQqLEI5V-hX38_robjgia62bNtrig/edit?usp=sharing

Full execution with failure

https://docs.google.com/presentation/d/1pe4HXdohWJyxwJHHbdmIitxnkCEN_
UEdfBWqZRvZQbc/edit?usp=sharing

30

https://docs.google.com/presentation/d/1pe4HXdohWJyxwJHHbdmIitxnkCEN_UEdfBWqZRvZQbc/edit?usp=sharing
https://docs.google.com/presentation/d/1pe4HXdohWJyxwJHHbdmIitxnkCEN_UEdfBWqZRvZQbc/edit?usp=sharing

Cyber Physical System (CPS) performance

https://docs.google.com/presentation/d/
1WwMoAma8trummqHhtNLrDV-AL7t4WSIZ7PMY5ZI-Jk0/edit?usp=sharing

31

https://docs.google.com/presentation/d/1WwMoAma8trummqHhtNLrDV-AL7t4WSIZ7PMY5ZI-Jk0/edit?usp=sharing
https://docs.google.com/presentation/d/1WwMoAma8trummqHhtNLrDV-AL7t4WSIZ7PMY5ZI-Jk0/edit?usp=sharing

	Backup

