
Fast Choreography of Cross-DevOps Reconfiguration with
Ballet
Multi-Site OpenStack Case Study

Jolan Philippe, Hélène Coullon, Antoine Omond, Charles Prud’Homme, Issam Räıs
March 13th, 2024

STACK, IMT Atlantique
SeMaFoR project

1

DevOps deployment and reconfiguration

Responsible for
development

Responsible for
operations

Run
tests

Package
app

Build
image
Docker

Push
artifact
to repo

Deploy
to server

Continuous
integration

Continuous
deployment+

DevOps team

ñ Continuous deployment then reconfiguration

2

Cross-DevOps reconfiguration

Responsible for
development of A

Responsible for
operations on A

Run
tests
on A

Package
A

Build
image
for A

Push A
to repo Deploy A

DevOps team

Responsible for
development of B

which uses A

Responsible for
operations on B

(using A)

Run
tests
on B

Package
B

Build
image
for B

Push B
to repo

Deploy B
(after A?)

DevOps team

3

Approach

Naive solution
Using a centralized tool on top of all DevOps teams is not suitable for scale and fault
tolerance reasons.

Decentralized solution
Make a plan for each DevOps team, and execute them conccurently.

Muse (Sokolowski et. al.) covers cross-DevOps decentralized reconfiguration with planning,
but inefficient because of the fixed life cycles (i.e., on-off mode for resources).

4

Ballet overview

Front Front

Gateway Gateway Gateway

Planner Planner Planner

Executor Executor Executor

DevOps DevOps♂♀

goals goals goals

assembly;
inventory;

local goals

assembly;
inventory;

local goals

RP1 RPi RPj

Node1 Nodei Nodej
Figure 1: Ballet overview

• Decentralized tool (one instance
of Ballet on each node)

• Declarative input
• Automatic planning
• Efficient reconfiguration

Gateway
Global knowledge building of
reconfiguration goals

Planner
Decentralized inference of
reconfiguration plans (RPs)

Executor
Coordinated execution of RP 5

Ballet’s usage

Responsible for
development of A
and A's life cycle

Responsible for
operations on A

... Deploy / update A
with Ballet

DevOps team

Responsible for
development of B
and B's life cycle

Responsible for
operations on B

(using A)

DevOps team

... Deploy / update B
with Ballet

Collaborative
using network

6

Developers’ concern

Life-cycle and ports
Simple language to define component
• Places: milestones in reconfiguration

• Transitions: reconfiguration actions (can be
concurrent) associated to a general behavior

• Ports: dependencies in the reconfiguration
process between components

ñ Python definition

initiated

configured

restarted

registered

mdbmaster:MariaDB_master

deployed

interrupted

deploy
interrupt
pause
update
uninstall

service

common

haproxy

bootstrapped

Figure 2: Visual representation of a component for
MariaDB 7

DevOps’ concern

Reconfiguration goals
Declarative language for defining
reconfiguration goals
• Behavior goal: Specify a behavior that

must be executed

• Port goal: Specify a port status (active,
inactive)

• State goal: Specify a component state
(specific, running, initial)

Listing 1: Language to define reconfiguration goals
for DevOps usage

<goa l s> ::“ b e h a v i o r s : <b h v r l i s t >
p o r t s : <p o r t l i s t >
components : <c o m p l i s t>

<b h v r l i s t > ::“ . . .
<bhvr i t em> ::“ − f o r a l l : <bhvr name>

| − component : <comp name>
be ha v i o r : <bhvr name>

<p o r t l i s t > ::“ . . .
<p o r t i t e m> ::“ − f o r a l l : <p o r t s t a t u s >

| − component : <comp name>
por t : <port name>
s t a t u s : <p o r t s t a t u s >

<c o m p l i s t> ::“ . . .
<comp item> ::“ − f o r a l l : <comp status>

| − component : <comp name>
s t a t u s : <comp status>

8

Ballet execution

Front Front

Gateway Gateway Gateway

avoided direct
communications

Planner Planner Planner

Executor Executor Executor

DevOps DevOps♂♀

goals goals goals

RP1 RPi RPj

Node1 Nodei Nodej

1

2

3

4

Figure 3: Ballet execution 9

Ballet execution: Planner

Local resolution

• Purpose: Find a sequence of actions to execute
ñ Constraint programming approach:

1. Component’s life-cycle as an automaton where transitions are actions of reconfiguration
2. Find a word in this automaton
3. Constraint the word with reconfiguration goals

Constraint propagation

• Purpose: Inferring additional actions and synchro. bareers
ñ Propagation of constraint based on Gossip algorithm

1. Send message about what would be port statuses with found sequence
2. Enrich local constraint model with received message
3. Consensus using Paxos-like approach to end the propagation

10

Ballet execution: Execution

Concurrency thanks to fine-grained life-cycles

• Execute actions on components concurrently (inter-component parallelism)
• Execute component’s actions concurrently when allowed (intra-component parallelism)
• Synchronize with external components with barrier inferred by the planner

Communication between components

• Message when a port is turned active
• Message when a port is turned inactive
• Messages exchanged for synchronization barriers

11

Evaluation with multi-site OpenStack deployment and update

Deployment and update of OpenStack with Galera cluster of MariaDB with n P r1, 2, 5, 10s

sites, that is a total of 7 ` 11 ˚ n components.

mariadb_master

common

haproxy mariadb_worker

common

haproxy

master

mariadb

keystone

glance

nova

neutron

mariadb

keystone

keystone

mariadb
keystone

mariadb

mariadb_worker

Master node

Worker node 1 Neutron node 1

Nova node 1

Site 1
Site n
Worker node n, Nova node n,
Neutron node n

Metric of interest

• Execution time
• Planner
• Executor

• Inference (see paper)
• Num. constraints
• Num. actions

12

Experimental results

Sc. # Sites Ballet Muse GainPlanning Execution Total
D

ep
lo

y

1 1.69s 306.02s 307.71s 536.57s 42.7%
2 1.78s 306.09s 307.86s 536.69s 42.6%
5 1.77s 306.19s 307.97s 537.09s 42.7%
10 2.02s 306.14s 308.19s 538.13s 42.7%

U
pd

at
e 1 3.36s 416.84s 420.20s 555.56s 24.4%
2 4.39s 416.92s 421.31s 555.70s 24.2%
5 6.05s 417.17s 423.22s 556.08s 24.0%
10 5.97s 417.46s 423.43s 556.77s 24.0%

Table 1: Comparison of time for planning and executing a deployment and an update of the
MariaDB master instance with Ballet and Muse. 13

Conclusion

Contributions

• Ballet as a DevOps reconfiguration tool
• Infer reconfiguration actions
• Efficient execution of actions

Target applications

• OpenStack, and CPS
• Fog areas, smart cities, IoT devices, etc.

Perspectives

• Extend our constraint propagation to other problems (e.g., placement or reconfiguration)
• Formalization and reasoning for correctness
• Manage asynchronous communications for intermittent systems

14

