Fast Choreography of Cross-DevOps Reconfiguration with
Ballet

Multi-Site OpenStack Case Study

Jolan Philippe, Antoine Omond, Héléne Coullon, Charles Prud’'Homme, Issam Rais

November 9, 2023

STACK, IMT Atlantique

Reconfiguration of Service oriente chitecture

Reconf.
plan0 | o . ‘
action; Initial | action; | ' action, | L ' action, | Final
. E— | 1 \—>‘ |
actiony state : I : I : I state
7777777 | o __ R |
action,,
Postdoc objectives Reconfiguration
. . . Plan 1 -
= Infer reconfiguration local actions 9
: . 3
= Coherent overall reconfiguration Reconfiguration 3
> >
Plan 2 5
Challenges =
o
] i R 7]
= Locally: Partial view of the system
= Need for communications decentralized operation

Deploy or update OpenStack with Galera cluster of MariaDB

ittt ettt F-----------)
Lol 1 H | H
1 1 iy ' ymariad| I
' 1 i) g7 common :
: common : i —Q)— Tkeystone nova Vi
1 | 21 haproxy 1 i
: . iy . . ‘> i
' haproxy | mariadb_master —@) E mariadb_worker e o TeToTaT T 5 L
1 —e H master .49_ i
' H aria
1 H)_

Master node

‘| mariadb_worker

: Worker node n, Nova node n,
: Neutron node n

Figure 1: Assembly of a multi-site OpenStack with a Galera cluster of distributed MariaDB databases.

= When facing complex projects: and

= Each team tackles a set of services and associated DevOps operations on different parts of
the project

= Each team usually use a centralized local DevOps tool with a local vision of the state of
their part

DevOps operations applied by one DevOps team can necessitate operations on other elements
tackled by other DevOps teams. This is in practice handle manually between teams as
DevOps tools apply operations in a centralized manner.

Using a centralized tool on top of all DevOps teams is not suitable for scale and fault
tolerance reasons.

Existing solution: Designed for components with fixed life cycle, and not efficient

Ballet overview

é DevOps lil DevOps = Declarative input
assembly; assembly; . .
. : . : = Automatic planning
inventory; inventory;
local goals local goals

= Efficient reconfiguration

Gateway
Global knowledge building of

i ;’ Gateway <-- - Gateway reconfiguration goals
- goals goals E g°a'5 Planner
Planner 5””% Planner k- - - = Planner]| : Decentralized inference of
5 g ; reconfiguration plans (RPs)
'RP, ; 5 RP, L RP; :
§ : : : Executor
|:|Executor é o ?|:|Executor + S |:|Executor Coordinated execution of RP
Node; Node; Node;

Figure 2: Ballet overview

Usage of Ballet

Ballet’s usage: Developer’s concern

= Specify components’
life-cycle (places,
transitions, ports)

= Defining components’
dependencies

= Scripts for
deployment or update

service service
@ —®
master
common common
haproxy haproxy
deploy deploy
pause ause
update pau
. update
uninstall .
uninstall
mdbmaster:MariaDB_master mdbworker0:MariaDB_worker

Figure 3: MariaDB_Master and MariaDB_Worker components

Ballet’s usage: DevOps’s concern

Listing 1: Language to define reconfiguration goals Language

for DevOps usage Declarative language for defining
reconfiguration goals

<goals> := behaviors: <bhvr_list> = Behavior goal: Specify a behavior that
ports: <port_list>
components: <comp_list>
<bhvr_list> = ... = Port goal: Specify a port status (active,
<bhvr_item> ::= — forall: <bhvr_name>
| — component: <comp-name>
behavior: <bhvr_name>

must be executed

inactive)

= State goal: Specify a component state
<port_list> ==

<port_item> = — forall: <port_status>
| — component: <comp_name>
port: <port_name>
status: <port_status>
<comp_list> == ... behaviors:
<comp_item> = — forall: <comp_status> - component: mariadb_master
| — component: <comp_name>
status: <comp_status>

(specific, running, initial)
Case study reconfiguration
behavior: update

components:
- forall: running 7

Ballet choreography engine

Execution language: Concerto-D (Antoine Omond’s thesis)

Reconfiguration programs can

1. Create assemblies of components (software system)
2. Make this assembly evolve at runtime

3. Interact with the life cycle of components
The used language propose instructions for:

Add/remove a component instance to the current assembly
Connect/disconnect two component instances with compatible ports
Push behavior to the behavior queue on a component instance

\Wait for a given component instance to execute a behavior

Decentralized execution: Concerto-D

mariadb_master’'s RP

pushB(master, interrupt)
pushB(master, update)
pushB(master, deploy)

mariadb_worker0’s RP

pushB(worker, interrupt)
pushB(worker, update)
wait(master, interrupt)
pushB(worker, deploy)

common

)_

haproxy

deploy

pause
update
uninstall

behaviors:

mdbmaster:MariaDB_master

service

-9
master
)_

behaviors:

common

)_

haproxy

service

—e

deploy

pause
update

uninstall

mdbworker0:MariaDB_worker

Failing example

behaviors: D:- behaviors: .
service service
= —e
master
mariadb_master’s RP
pushB(master, interrupt) common common
pushB(master, update))]
pushB(master, deploy) haproxy haproxy
— —
mariadb_workerQ’s RP
pushB(worker, interrupt)
pushB(worker, update)
pushB(worker, deploy) deploy deploy
pause
update pause
uninstall UQ.d‘“e
uninstall
mdbmaster:MariaDB_master mdbworker0:MariaDB_worker

10

Approach for Ballet’s planner

Purpose: Find a sequence of behavior to execute

Hint: Constraint programming approach

Purpose: Inferring wait instructions (i.e., synchro. bareer)
Hint: Propagation based on Gossip algorithm

Hint: Consensus using Paxos-like approach

11

CP for local planning

service
—® interrupt

common

p; state 1 2 3 4 5
h
R common v v X X X
deploy
(5) haproxy x X ¢ X X
service v X X X X
deploy

interrupt
pause
update
uninstall

uninstall

1)

mdbmaster:MariaDB_master

Figure 5: Automaton representation of Mariadb_master
Figure 4: MariaDB_master component'’s life cycle with its matrix for ports statuses.

control component "

Message inference

Case study reconfiguration

Sequence := [interrupt, update, deploy]

behaviors: States == [1, 2, 4, 1]
- component: mariadb_master common: [V, v, x, V]
behavior: update Port status := haproxy: [x, x, x, x]

components: service: [V, x, x, V]

- forall: running

Must propagate constraints using messages:

= “Components using master's common must disconnect until update ends”
= Message: (master, common, disconnect, update)
= “Components using master’s service must disconnect until interrupt ends”

= Message: (master, service, disconnect, interrupt)

13

Constraint propagation

Femm e e e e e e — - ' : '

1 1

! ! 0 ' ymariad,
1 common 1 *) 7y common i
. _.)_ , i _.)_ Ikeystoge | nova i
' ' 21 " haproxy] '_‘5_ :

iadb_master |—@ L : 0o o o4 o :
1 haproxy | mariadb_| i mariadb_worker = :
1 0 master
' :
' H

Master node

: Worker node n, Nova node n,
: Neutron node n

Propagated constraint (gossip + consensus) from mariadb_master for master’s service

= mariadb_master = mariadb_worker
= mariadb_worker = keystone; glance; nova; neutron
= keystone = glance; nova; neutron 14

Enriched CP Model

Enriched CP problem

= Enriched automaton with synchronization instruction

= Additional constraint to have synchro. barrier in local plan

state 1 2 3 4 5

common X X X

haproxy x X

SN
X
X

master v

wait_mariadb_master_interrypt)
service v X X x X

uninstall

wait_mariadb_master_interrupt de

Figure 6: Enriched automaton representation of Mariadb_worker. 15

Deployment and update of with n e [1,2,5,10]
sites, that is a total of 7 + 11 * n components.

For both the planner and the executor: Execution time

For the planner: Inferred constraints, inferred actions, number of communications

Results on 1 + 3 * n nodes Gros (Nancy) of Grid'5000
Comparison to Muse (decentralized reconfiguration)

Reproducible example on Grid’5000

16

Experimental results

. Ballet .

Sc. | # Sites Planning | Execution | Total Muse | Gain
1 1.69s 306.02s 307.71s | 536.57s | 42.7%

_E: 1.78s 306.09s 307.86s | 536.69s | 42.6%
8 5 1.77s 306.19s 307.97s | 537.09s | 42.7%
10 2.02s 306.14s 308.19s | 538.13s | 42.7%

. 1 3.36s 416.84s || 420.20s | 555.56s | 24.4%

2 4305 416.92s | 421.31s | 555.70s | 24.2%

;E?- 5 6.05s 417.17s 423.22s | 556.08s | 24.0%
10 5.97s 417.46s 423.43s | 556.77s | 24.0%

Table 1: Comparison of time for planning and executing a deployment and an update of the
MariaDB_master instance with Ballet and Muse. 17

Experimental results

‘ Sc. ‘ #£Sites ‘ #Constraints ‘ #Instructions ‘ #Messages ‘

n 7T+ 11l%n 7T+ 11%n 0
2 1 18 18 0
E‘ 2 29 29 0
a 5 62 62 0
10 117 117 0
n 3+20%n 8+ 1lxn 9% n
9 1 23 19 9
3 2 43 30 18
D 5 103 63 45
10 203 118 90

Table 2: Results of the planning phase for the deploy and update scenario when varying the number of

Mariadb_workers in a Galera cluster.

18

Concluding remarks

Ballet and SeMaFoR project
Infer reconfiguration actions (CP model)

Communication protocol

Work under review for SANER2024

OpenStack, and CPS

(SeMaFoR) Fog areas, smart cities, loT devices, etc.

Model-Driven Engineering approach for determining objectives
Experiments on more topologies

Formalization of Planner 4+ Executor in Why3 for correctness "

Backup

Ballet’s usage: Developer’s concern

Listing 2: Control component MariaDB master in PYTHON

1 class MariaDB_Master (Component):

2 def create(self):

3 self.places = ["initiated", "configured", "bootstrapped", "restarted",

4 "registered", "deployed", "interrupted"]

5 self.transitions = {

6 "configureO0": ("initiated", "configured", "deploy", self.configure0),
7 "configurel": ("initiated", "configured", "deploy", self.configurel),
8 "configure2": ("initiated", "configured", "deploy", self.configure2),
9

10 }

11 self.dependencies = {

12 "service": (DepType.PROVIDE, ["deployed"l),

13 "haproxy": (DepType.USE, ["bootstrapped","restarted"]),

14

15 }

16 self.initial_place = 'initiated'

17 self .running_place = 'deployed'

18

19 def configureO(self):

20 # concrete actions

20

CP Model

interrupt

= REGULAR(B, T, Sjnit, Sgoal)

state 1 2 3 4 5 = Siy1 = incn [S,'] [b,] Viel.m
common ¢ X X X = Count(b, B,>,0)
deploy
(5) haproxy x x v x X = status(p, smi1) = Ip
service v X X X X where
I, e {active,inactive}
¢i = cost(s;, b;), Viel.m
uninstall C= SuMm([c|iel.m])

1

Figure 8: Automaton representation of Mariadb_master

component'’s life cycle with its matrix for ports statuses. 1

Planner time

#£Sites Solving Communications Total
1 1.58 (0.06) 1.78 (0.44) 3.36 (0.43)
2 1.53 (0.13) 2.85 (1.62) 4.39 (1.72)
5 1.59 (0.06) 4.47 (0.92) 6.05 (0.91)
10 2.61 (0.17) 0.26 (0.01) 5.97 (0.63)

Table 3: Average duration in seconds (and standard deviation) to calculate the plans for the update

scenario.

22

Gossip + Protocol

https://docs.google.com/presentation/d/18asPwHJ4H0ZqA1mQqLEISV-hX38_
robjgia62bNtrig/edit?usp=sharing

23

https://docs.google.com/presentation/d/18asPwHJ4HOZqAlmQqLEI5V-hX38_robjgia62bNtrig/edit?usp=sharing
https://docs.google.com/presentation/d/18asPwHJ4HOZqAlmQqLEI5V-hX38_robjgia62bNtrig/edit?usp=sharing

Full execution with failure

https://docs.google.com/presentation/d/1ped4HXdohWIyxwIJHHbAmMIitxnkCEN_
UEdfBWqZRvZQbc/edit?usp=sharing

24

https://docs.google.com/presentation/d/1pe4HXdohWJyxwJHHbdmIitxnkCEN_UEdfBWqZRvZQbc/edit?usp=sharing
https://docs.google.com/presentation/d/1pe4HXdohWJyxwJHHbdmIitxnkCEN_UEdfBWqZRvZQbc/edit?usp=sharing

Cyber Physical System (CPS) performance

https://docs.google.com/presentation/d/
1WwMoAma8trummgHhtNLrDV-AL7t4WSIZ7PMY5ZI-Jk0/edit?usp=sharing

25

https://docs.google.com/presentation/d/1WwMoAma8trummqHhtNLrDV-AL7t4WSIZ7PMY5ZI-Jk0/edit?usp=sharing
https://docs.google.com/presentation/d/1WwMoAma8trummqHhtNLrDV-AL7t4WSIZ7PMY5ZI-Jk0/edit?usp=sharing

	Usage of Ballet
	Ballet choreography engine
	Backup

