
Decentralized reconfiguration plan 
synthesis
Jolan PHILIPPE
PostDoc - SeMaFoR project

20th April 2023



Resume

2

Master’s degree
● Parallel programming and skeletons
● Correctness of programs
● Distributed computing (MPI)

Ph.D 
● Model-Driven Engineering 
● Distributed computing
● Feature analysis 

Postdoc
● Fog computing 
● (Re)configuration of systems
● Constraint programming



MAPE-K and SeMaFoR

3

● Monitor its state and the state of the environment
● Analyze to decide which state to reach ⟶ WP2
● Plan the reconfiguration ⟶ WP3
● Execute the reconfiguration to reach the new state
○ Knowledge that is common, to take a decision

Coordinated Control Pattern model



Reconfiguration planning

4

Objectives:
➢ Infer reconfiguration actions
➢ Optimal overall reconfiguration

Challenges:
■ Locally: partial view of the system
■ Collaboration with neighborhood

Inspiration:
■ SMT-based work by Robillard et. al.

Initial 
State

Final
State

action1 action2 … actionn

Reconf
Program:
action1
action2

...
actionn

RP1

RP2

RPn

C
om

m
un

ic
at

io
ns

N1

N2

…

Nn



Concerto-D (Antoine Omond’s PhD)

Concerto-D: A reconfiguration language for decentralized components
- Involved components
- Interactions / connections between components
- Changes in the component

5

Components are connected using ports:
● Provide port
● Use port

creating coordination constraints



Concerto-D: Involved components 

6

provider1

provider2

add("provider1", Provider)
add("provider2", Provider)
add("server", Server)



Concerto-D: Connections between components

7

add("provider1", Provider)
add("provider2", Provider)
add("server", Server)
connect(“provider1”, “service”,
              “server”, “service1”)
connect(“provider1”, “config”,
              “server”, “config1”)
connect(“provider2”, “service”,
              “server”, “service2”)
connect(“provider2”, “config”,
              “server”, “config2”)

provider1

provider2



Concerto-D: State and changes in the component

8

update

Example of objective:
● Update a running provider
● End the reconfiguration with a running provider

● update provider
● install provider

Inferred actions:



Concerto-D: State and changes in the component

pushB(provider, update)
pushB(provider, install)
wait(provider, install )

9

pushB(provider, update) pushB(provider, install)

behaviors: behaviors: behaviors:

non-blocking
non-blocking

blocking (syncro)



Decentralized configuration plan

10

provider1

provider2

pushB(provider1, update)
pushB(provider1, install)

pushB(provider2, update)
pushB(provider2, install)

provider1

pushB(provider1, update)
pushB(provider1, install)
wait(provider1, install)
wait(server, deploy)

provider2

pushB(provider2, update)
pushB(provider2, install)
wait(provider2, install)
wait(server, deploy)

server

pushB(server, suspend)
wait(provider1, install)
wait(provider2, install)
pushB(server, deploy)
wait(server, deploy)

Partial information as input Full reconfiguration 
plan as output

inference



Decentralized planning of reconfiguration plans

11

Inputs:
- Local decision of the target configuration (WP2)
- Set of possible reconfiguration instructions
- Partial view of the current configuration (state of the system)

Output:
- Reconfiguration plan (or program) to reach the targeted configuration

For each component:

Intuition of the solution:
● Sharing protocol with message passing (impacted port) (rumor-spreading inspired)

- Local decision (MiniZinc’s automata)
- Inputs: Current configuration + Input messages + Reconfiguration 

instructions
- Outputs: Set of behaviors + Output messages

- Local planning
- Inputs: Set of behaviors + Output messages
- Output: Reconfiguration plan



Example of stratified assembly and reconfiguration

12

pushB(facts, uninstall)
pushB(facts, deploy)

facts

11 components, all 
deployed:

● facts
● common
● haproxy
● memcached
● ovswitch
● rabbitmq
● mariadb
● keystone
● nova
● neutron
● glance

Goal: reboot facts



13

Information sharing protocol - Step I: Propose



14

Information sharing protocol - Step I: Propose



15

Information sharing protocol - Step I: Propose



16

Information sharing protocol - Step I: Propose



17

Information sharing protocol - Step I: Propose



Information sharing protocol - Step II: Send ack

18



19

Information sharing protocol - Step II: Send ack



20

Information sharing protocol - Step II: Send ack



21

Information sharing protocol - Step II: Send ack



Information sharing protocol - Step III: Global ack from root

22



Local decision

23

pushB(facts, uninstall)
pushB(facts, deploy)

facts

Messages:
● (service, disabled - 

enabled, uninstall)

Messages:
●

Messages:
● (facts, service, disabled - 

enabled, uninstall)

haproxy

Messages:
● (haproxy, service, disabled - 

enabled, uninstall)

Example 1:

Example 2:

Local decision:
pushB(facts, uninstall)
pushB(facts, deploy)

Local decision:
pushB(haproxy, uninstall)
pushB(haproxy, deploy)



Local planning

24

Messages:
● (service, disabled - 

enabled, uninstall)

Messages:
●

pushB(facts, uninstall)
pushB(facts, deploy)

facts

pushB(haproxy, uninstall)
wait(facts, uninstall)
pushB(haproxy, deploy)

haproxy

Example 1:

Example 2:

Local decision:
pushB(facts, uninstall)
pushB(facts, deploy)

Local decision:
pushB(haproxy, uninstall)
pushB(haproxy, deploy)

Several strategy: Brute Force; CP-based



Pseudo-code for sharing protocol
function decentralized_plan(comp, targeted_state, roots):

while(true):
messages = get_messages(comp)
If ((messages.empty and comp.in(roots)) or message.size > 0):

bhvs, ports = local_decision(comp, messages, targeted_state)
If (not ports.empty):

msgs = send_messages(comp.neighbors, ports)
sent_msgs = sent_msgs ++ msgs 

If (sent_msgs.allAcked):
send_ack(sent_msgs.sources)

If (sent_msgs.allAcked and comp.in(roots)):
bcast_ack(comp)

If (roots.allAcked):
return local_plan(bhvs, messages)

1
2
3
4
5
6
7
8 

9
10 

11
12 

13
14 25



Conclusion

26

● Lack of decentralized planning for distributed system 
reconfigurations

● Propose a decentralized solution based on a sharing protocol
● Information sharing protocol

○ Local decision
○ Local planning

Questions?


