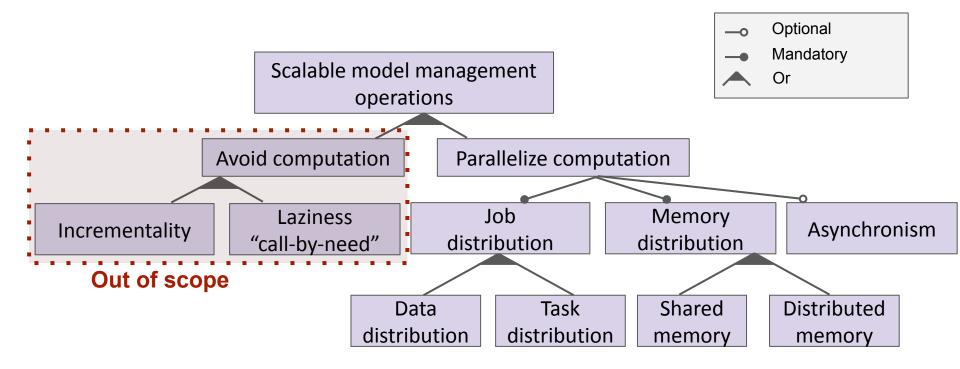


ESR 14: Multi-Paradigm Distribution for Model Management Operations

Jolan PHILIPPE

naomod

"This project has received funding from the European Union's Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No 813884".


MT Atlantique retagne-Pays de la Loire cole Mines-Télécom

Model management for Very Large Models (VMLs)

- Computational complexity
 - Size of the model
 - Storage and memory constraints
- Scalability challenges
 - Horizontal scalability
 - Vertical scalability
- Two main approaches
 Avoid computation
 Parallelize computation

Background: Scalability of model management for VLMs

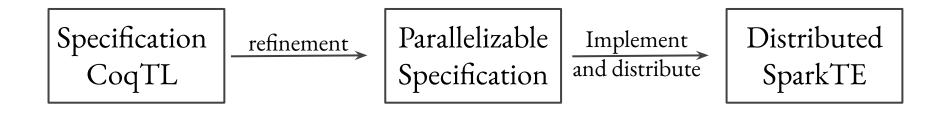
State of the art: Parallelization in MDE

	jan le	Model query Model transfo. Poo			ed me	ib. mer	Parall.	Parallo.	^{.p} arallel chronic_	
	Mod	Mod	Patte	Optiji	Shar	Distr	Task	Data	Asyn	
Amine Benelallam et al. «Efficient model partitioning for distributed model» SLE 2016		X		X		X		x		
Amine Benelallam et al. «ATL-MR: model transformation on MapReduce» SPLASH 2015		X				x		x		
Loli Burgueño et al. «A Linda-Based platform for the parallel execution» IST 2016		x			х			x	x	
Loli Burgueño et al. «Towards distributed model transformations with LinTra» JISBD 2016		x		x		x		x	x	
Loli Burgueño et al. «Parallel in-place model transformations with LinTra» CEUR-WS 2015		x			х		x		x	
Jesús S. Cuadrado et al. «Efficient execution of ATL model transformations» TSE 2020		x			х			x		
Gábor Imre et al. «Parallel graph transformations on multicore systems» MSEPT 2012		x			X		x			
Christian Krause et al. «Implementing graph transformations in the BSP model» FASE 2014			x			x		x		
Sina Madani et al. «Distributed model validation with Epsilon» SSM 2021	x				Х	x		x		
Sina Madani et al. «Towards optimisation of model queries: a parallel» ECMFA 2019	x			x	x		x			
Gergely Mezei et al. «Towards truly parallel model transformations: a» EURCON 2019	1		x			x	x			
Massimo Tisi et al. «Parallel execution of ATL transformation rules» MODELS 2013	1	x			х		x			
Le-Duc Tung et al. «Towards systematic parallelization of graph transfo» IJPP 2017	1	x				x		x		
Tamás Vajk et al. «Runtime model validation with parallel object» MoDeVVa 2011	x				х		x			

4

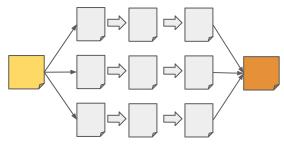
Problematic

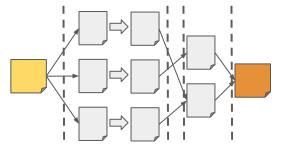
- Large number of distributed engines
 - Designed with **different purposes**
 - Following different design choices
 - Implemented on different languages / infrastructures

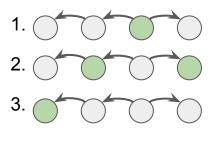

What are the adapted design choices for a given case?

Goal: Compare design choices in distributed model transformation engine

Contribution


- Built a modular distributed transformation engine (SparkTE)
 - From a **formal specification**
 - Optimized for **data-distributed** computation
- Analysed **several strategies** for **query** execution
- Analysed design choices for distributed transformation

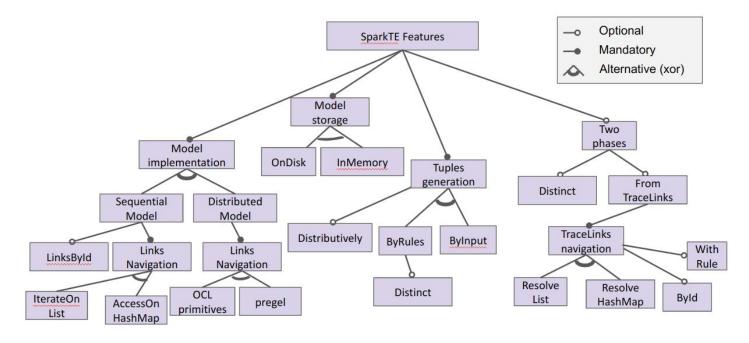



- 1. Took an existing formalization: CoqTL
- 2. Specified additional features for parallelization
 o Proof of equivalence
- 3. Implemented the specification on top of Spark

Analyzed several strategies for query execution

Implemented a single query on social networks
 Following different distribution strategies

Spark


MapReduce

Pregel

- Made hybrid strategies
- Analysed performances results
- Analysed correlation between input model and perf.

Analysed design choices for distributed transformation

• Formalized the design space of our solution

- Added the configuration aspect to SparkTE
- Experiments features

jolan.philippe@imt-atlantique.fr