
Executing Certified
Model Transformations

on Apache Spark
Jolan Philippe

IMT Atlantique, LS2N
Massimo Tisi

IMT Atlantique, LS2N

Hélène Coullon
IMT Atlantique, Inria, LS2N

Gerson Sunyé
Univ. of Nantes, LS2N

SLE 2021, 17th October

1

Context: Correctness on large model transformation

Correctness
Formally proving the
respect to a specification of
a model transformation

Large-model challenges
● Horizontal and Vertical

Scalability
● Memory management
● Computation time

Model transformation
An automated way of modifying

and creating models

Context: Correctness on large model transformation

Correctness
Formally proving the
respect to a specification of
a model transformation

Large-model challenges
● Horizontal and Vertical

Scalability
● Memory management
● Computation time

3

Hardware Solution
Multi-core, and distributed
architecture

Software Solution
Framework for large-data
management

Formalism and Software
Curry-Howard Correspondence
Proof-assistants

Model transformation
An automated way of modifying

and creating models

Context: Correctness on large model transformation

Correctness
Formally proving the
respect to a specification of
a model transformation

Large-model challenges
● Horizontal and Vertical

Scalability
● Memory management
● Computation time

4

Hardware Solution
Multi-core, and distributed
architecture

Software Solution
Framework for large-data
management

Formalism and Software
Curry-Howard Correspondence
Proof-assistants

No bridge (in a MDE context)

Model transformation
An automated way of modifying

and creating models

CoqTL

Properties

Background: CoqTL

● A DSL for expressing model
transformations with Coq

● Allow to express user properties
● Proving mechanism

Reference: Zheng Cheng, Massimo Tisi, Rémi
Douence. CoqTL: A Coq DSL for Rule-Based Model
Transformation. Software and Systems Modeling,
Springer Verlag, In press, pp.1-15.

Transformation

User defined

5

Background: Apache Spark

6

▪ Master & Workers architecture
▪ In-memory computation

▪ High-order functions
▪ Ease parallelism
▪ Distributed lists

▪ Widely-used by data analysts
▪ Many examples
▪ High-confidence

 A unified analytics engine for large-scale data processing

Objective

7

● Bridge correctness (Coq) to a distributed solution (Spark)
● Have two distinct specifications

1. One designed for reasoning (CoqTL)
2. One for the actual execution, specifying the optimizations

(Parallelizable CoqTL)
➢ Proof of equivalence between those

● Have an executable solution on top of Spark: SparkTE

Coq to Scala

8

user theorems

CoqTL
transformation

CoqTL

certify

runs on

Parallelizable
CoqTL

runs on

refines

Scala
transformation

ScalaTE

runs on

SparkTE

runs on

Coq Scala

by-hand

designed for

Rule translation

Extraction
by-hand

List replaced by
distributed lists

1 2 3

Coq to Scala

9

user theorems

CoqTL
transformation

CoqTL

certify

runs on

Parallelizable
CoqTL

runs on

refines

Scala
transformation

ScalaTE

runs on

SparkTE

runs on

Coq Scala

by-hand

Confidence

designed for

Rule translation

Extraction
by-hand

List replaced by
distributed lists

1 2 3

Parallelizable CoqTL refines CoqTL

10

CoqTL Parallelizable
CoqTL

refines ScalaTE SparkTE
Extraction

by-hand
List replaced by
distributed lists

1 2 3

● A CoqTL refinement: Parallelizable CoqTL
○ Designed to increase parallelization

● Confidence? Formal proof of equivalence
with standard CoqTL

Parallelizable CoqTL to ScalaTE

11

CoqTL Parallelizable
CoqTL

refines ScalaTE SparkTE
Extraction

by-hand
List replaced by
distributed lists

1 2 3

● An implementation written in Scala
○ Manually extracted
○ Executable solution as target: Scala

Transformation Engine (ScalaTE)
● Confidence ? Direct translation of pure functions

Parallelizable CoqTL refines CoqTL

12

CoqTL Parallelizable
CoqTL

refines ScalaTE SparkTE
Extraction

by-hand
List replaced by
distributed lists

1 2 3

● A parallel implementation on top of Spark
○ Replace lists by distributed lists
○ Executable solution on distributed

architectures as target: SparkTE
● Confidence ? “In Spark we trust”

Simple example: Relational2Class

13

Column

+ name: String

owner

attr*

Attribute

+ name: String

owner

attr*

rule Table2Class {
from s: RelationalTable
to t: ClassClass (s.name)
 r: ClassToAttributes(t, resolveAll(s.attr))

}

rule Column2Attribute {
from
 s1: RelationalColumn
 s2: RelationalTable | s1.owner == s2
to t: ClassAttribute (s1.name)
 r: AttributeToClass(t, resolve(s2))

}

Table

+ name: String

Class

+ name: String

Running Relational2Class on SparkTE

(c1)
(c2)
(t)
(c1, c1)
(c1, c2)
(c1, t)

(c2, c1)
(c2, c2)
(c2, t)
(t, c1)
(t, c2)
(t, t)

Distributed

t

c2c1

tup
les

tuples

Running Relational2Class on SparkTE

(c1)
(c2)
(t)
(c1, c1)
(c1, c2)
(c1, t)

(c2, c1)
(c2, c2)
(c2, t)
(t, c1)
(t, c2)
(t, t)

Distributed

(t) (cl)

(c1, t) (a1)

(c2, t) (a2)

instantiate
+ trace-links

instantiate
+ trace-links

Distributed

t

c2c1

tup
les

tuples

Running Relational2Class on SparkTE

16

(c1)
(c2)
(t)
(c1, c1)
(c1, c2)
(c1, t)

(c2, c1)
(c2, c2)
(c2, t)
(t, c1)
(t, c2)
(t, t)

Distributed

(t) (cl)

(c1, t) (a1)

(c2, t) (a2)

instantiate
+ trace-links

instantiate
+ trace-links

Distributed Distributed

trace-links:
(t) (cl)
(c1, t) (a1)
(c2, t) (a2)

trace-links:
(t) (cl)
(c1, t) (a1)
(c2, t) (a2)

t

c2c1
broadcast

tup
les

tuples

Running Relational2Class on SparkTE

17

(c1)
(c2)
(t)
(c1, c1)
(c1, c2)
(c1, t)

(c2, c1)
(c2, c2)
(c2, t)
(t, c1)
(t, c2)
(t, t)

Distributed

(t) (cl)

(c1, t) (a1)

(c2, t) (a2)

instantiate
+ trace-links

instantiate
+ trace-links

cl a1

cl a2

Distributed Distributed

trace-links:
(t) (cl)
(c1, t) (a1)
(c2, t) (a2)

trace-links:
(t) (cl)
(c1, t) (a1)
(c2, t) (a2)

t

c2c1
broadcast

tup
les

tuples

apply

apply

Running Relational2Class on SparkTE

18

(c1)
(c2)
(t)
(c1, c1)
(c1, c2)
(c1, t)

(c2, c1)
(c2, c2)
(c2, t)
(t, c1)
(t, c2)
(t, t)

Distributed

(t) (cl)

(c1, t) (a1)

(c2, t) (a2)

instantiate
+ trace-links

instantiate
+ trace-links

cl a1

cl a2

Distributed Distributed

trace-links:
(t) (cl)
(c1, t) (a1)
(c2, t) (a2)

trace-links:
(t) (cl)
(c1, t) (a1)
(c2, t) (a2)

t

c2c1

cl

a2a1
broadcast

tup
les

tuples

apply

apply

Optimization 1: One-phase to two-phases approach

19

Standard CoqTL specification
○ Single phase
○ A rule generates output element and output link at the same time
○ Easy for reasoning

● Two independent versions of CoqTL: Standard + Parallelizable
● A two-phases implementation:

○ first the output elements
○ then the output links

Optimization 2: Tuples by rule

20

Standard CoqTL solution:
● A recursive algorithm
● Distribution at the last iteration
● Too many useless tuples
● Leads to an imbalance in partitions

Solution:
● Generate only the useful tuples
● Instead of iterating on elements, we iterate on rules
● More balanced partitions

Optimization 3: Use of traces

21

Standard CoqTL specification
○ Complete application of rules for creating links

(including instantiate)

Solution
● Use the trace-links in the apply phase
● Iterate on trace-links

○ Find corresponding rule
○ Find all involved output element (from other rules)

■ Using resolve function
○ Creates the output link

Experimental setup

22

Case studies: ● Relational2Class multivalued attributes
● IMDb “find couples” from TTC
● DBLP query

Versions: ● Scala 2.12
● Spark 3.1.1 (Hadoop 2.7)

Cluster: ● Grid’5000 platform
○ paravance (Rennes): 2x8 cores/CPU, Intel Xeon E5-2620

memory of 128GB
○ gros (Nancy): 2x18 cores/CPU, Intel Xeon Gold 5220

memory of 96GB

Goal: ● Study the parallelization (scalability) of SparkTE

First experiment

23

Cores
(machines)

1 (1) 2 (1) 4 (2) 8 (2)

Relational2Class 150 290 Low times (s) 27.02 32.50 13.17 11.91

speedup 1.00 0.84 2.13 2.31

DBLP 700 1886 Medium times (s) 0.83 0.35 0.56 0.84

speedup 1.00 2.37 1.49 0.99

IMDb 440 1968 High times (s) 38.85 22.01 18.33 11.61

speedup 1.00 1.74 2.09 3.30

elem
ents

links complexity

Potential parallelization

24

ideal speedup
50% of ideal speedup

Model of 150 elements and 290 links, up 32
cores on 4 machines (on paravance)

Model of 600 elements and 1060 links, up
128 cores on 8 machines (on gros)

Conclusion and future work

25

● Contribution
○ A CoqTL refinement: Parallelizable CoqTL
○ An executable counterpart, written in Scala
○ A parallel implementation of the executable part on top of Spark

● Conclusive remarks
○ We have shown a potential scalability for different operational cost
○ Many challenges (caused by memory issues, distribution, Spark overhead)

● Future work
○ Write a certified compiler from CoqTL to Scala
○ Study other approaches supported by Spark (e.g., GraphX)
○ Integrate the work with persistence solution (e.g., HDFS)

Conclusion and future work

26

● Contribution
○ A CoqTL refinement: Parallelizable CoqTL
○ An executable counterpart, written in Scala
○ A parallel implementation of the executable part on top of Spark

● Conclusive remarks
○ We have shown a potential scalability for different operational cost
○ Many challenges (caused by memory issues, distribution, Spark overhead)

● Future work
○ Write a certified compiler from CoqTL to Scala
○ Study other approaches supported by Spark (e.g., GraphX)
○ Integrate the work with persistence solution (e.g., HDFS)

Questions ?

