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No bridge (in a MDE context)



Background: CoqTL

User defined

e A DSL for expressing model / ‘l)/) Properties \
transformations with Coqg —
e Allow to express user properties 1
e Proving mechanism
'_‘}) Transformation

Reference: zheng Cheng, Massimo Tisi, Rémi
Douence. CoqTL: A Coq DSL for Rule-Based Model l

Transformation. Software and Systems Modeling,
Springer Verlag, In press, pp.1-15.

) CoqTL



Background: Apache Spark

A unified analytics engine for large-scale data processing

Master & Workers architecture Workeg\z
In-memory computation SparK

Distributed lists

Master 2 Worker
High-order functions spaill Spark |
Ease parallelism g -

/ |
|
|
|
\

|
|
¥ =
0.3 .
x&ﬁ
U

Widely-used by data analysts
Many examples —
High-confidence s,oor‘/(Y



Objective

e Bridge correctness (Coq) to a distributed solution (Spark)
e Have two distinct specifications
1. One designed for reasoning (CoqTL)
2. One for the actual execution, specifying the optimizations
(Parallelizable CoqTL)
> Proof of equivalence between those
e Have an executable solution on top of Spark: SparkTE
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Parallelizable CoqTL refines CoqTL
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e A CoqgTL refinement: Parallelizable CoqTL
o Designed to increase parallelization

e Confidence? Formal proof of equivalence
with standard CoqTL



Parallelizable CoqTL to ScalaTE
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e An implementation written in Scala
o Manually extracted
o Executable solution as target: Scala
Transformation Engine (ScalaTE)
e Confidence ? Direct translation of pure functions



Parallelizable CoqTL refines CoqTL
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e A parallel implementation on top of Spark
o Replace lists by distributed lists
o Executable solution on distributed
architectures as target: SparkTE
e Confidence ? “In Spark we trust”



Simple example: Relational2Class

Table Class

+ name: String + name: String

owner owner
« | attr R o | atr

Column Attribute
+ name: String + name: String
rule Table2Class { rule Column2Attribute {
from s: RelationalTable from |
to t: ClassClass (s.name) s1: RelationalColumn
r: ClassToAttributes(t, resolveAll(s.attr)) s2: RelationalTable | s1.owner == s2
} to t: ClassAttribute (s1.name)

r: AttributeToClass(t, resolve(s2))



Running Relational2Class on SparkTE
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Running Relational2Class on SparkTE

Distributed Distributed
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c2 instantiate
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Running Relational2Class on SparkTE
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Running Relational2Class on SparkTE

Distributed Distributed Distributed
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Running Relational2Class on SparkTE

Distributed Distributed Distributed
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Optimization 1: One-phase to two-phases approach

Standard CoqTL specification
o Single phase
o A rule generates output element and output link at the same time
o Easy for reasoning

e Two independent versions of CoqTL: Standard + Parallelizable
e A two-phases implementation:

o first the output elements

o then the output links



Optimization 2: Tuples by rule

Standard CoqTL solution:

e A recursive algorithm

e Distribution at the last iteration

e T[oo many useless tuples

e |eads to an imbalance in partitions

Solution:

e Generate only the useful tuples

e Instead of iterating on elements, we iterate on rules
e More balanced partitions



Optimization 3: Use of traces

Standard CoqTL specification
o Complete application of rules for creating links
(including instantiate)

Solution
e Use the trace-links in the apply phase
e |terate on trace-links
o Find corresponding rule
o Find all involved output element (from other rules)
m Using resolve function
o Creates the output link



Experimental setup

Goal: e Study the parallelization (scalability) of SparkTE

Versions: e Scala2.1?2
e Spark 3.1.1 (Hadoop 2.7)

Cluster: e Grid’5000 platform
o paravance (Rennes): 2x8 cores/CPU, Intel Xeon E5-2620
memory of 128GB
o gros (Nancy): 2x18 cores/CPU, Intel Xeon Gold 5220
memory of 96GB

Case studies: @ Relational2Class multivalued attributes
e [MDb “find couples” from TTC
e DBLP query



First experiment

o Cores 1(1) 2(1) 4 (2) 8 (2)
3 _ (machines)
>
% (3 complexity
Relational2Class | 150 | 290 Low | times (s) 27.02 32.50 13.17 11.91
speedup 1.00 0.84 2.13 2.31
DBLP 700 | 1886 Medium | times (s) 0.83 0.35 0.56 0.84
speedup 1.00 2.37 1.49 0.99
IMDb 440 | 1968 High | times (s) 38.85 22.01 18.33 11.61
speedup 1.00 1.74 2.09 3.30




Potential parallelization

Introduced simulated computation time on phases
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Conclusion and future work

e Contribution
o A CoqTL refinement: Parallelizable CoqTL

o An executable counterpart, written in Scala
o A parallel implementation of the executable part on top of Spark

e Conclusive remarks

o  We have shown a potential scalability for different operational cost

o Many challenges (caused by memory issues, distribution, Spark overhead)
e Future work

o  Write a certified compiler from CoqTL to Scala

o Study other approaches supported by Spark (e.g., GraphX)

o Integrate the work with persistence solution (e.g., HDFS)
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Questions ?



