SLE 2021, 17th October

Context: Correctness on large model transformation

Model transformation
An automated way of modifying
and creating models

Correctness Large-model challenges
Formally proving the e Horizontal and Vertical
respect to a specification of Scalability

a model transformation e [Memory management

e (omputation time

Context: Correctness on large model transformation

Model transformation
An automated way of modifying
and creating models

Correctness | Large-model challenges
Formally proving the e Horizontal and Vertical
respect to a specification of Scalability

a model transformation '; e Memory management

e (omputation time

" 4 &

Formalism and Software | Hardware Solution Software Solution
Curry-Howard Correspondence | Multi-core, and distributed Framework for large-data
Proof-assistants architecture management

Context: Correctness on large model transformation

Model transformation
An automated way of modifying
and creating models

Correctness | Large-model challenges
Formally proving the e Horizontal and Vertical
respect to a specification of Scalability

a model transformation '; e Memory management

e (omputation time

" 4 &

Formalism and Software | Hardware Solution Software Solution
Curry-Howard Correspondence | Multi-core, and distributed Framework for large-data
Proof-assistants architecture management

No bridge (in a MDE context)

Background: CoqTL

User defined

e A DSL for expressing model / ‘l)/) Properties \
transformations with Coqg —
e Allow to express user properties 1
e Proving mechanism
'_‘}) Transformation

Reference: zheng Cheng, Massimo Tisi, Rémi
Douence. CoqTL: A Coq DSL for Rule-Based Model l

Transformation. Software and Systems Modeling,
Springer Verlag, In press, pp.1-15.

) CoqTL

Background: Apache Spark

A unified analytics engine for large-scale data processing

Master & Workers architecture Workeg\z
In-memory computation SparK

Distributed lists

Master 2 Worker
High-order functions spaill Spark |
Ease parallelism g -

/ |
|
|
|
\

|
|
¥ =
0.3 .
x&ﬁ
U

Widely-used by data analysts
Many examples —
High-confidence s,oor‘/(Y

Objective

e Bridge correctness (Coq) to a distributed solution (Spark)
e Have two distinct specifications
1. One designed for reasoning (CoqTL)
2. One for the actual execution, specifying the optimizations
(Parallelizable CoqTL)
> Proof of equivalence between those
e Have an executable solution on top of Spark: SparkTE

Coq to Scala

user theorems

1
1 certif
Y y

CoqTL

transformation

Rule translation

Coq Scala !

by-hand

N

runson 7 SN{ runson

4 S

@

N :
\ _____ - Extraction \ List replaced by ‘
CoqTL < Parallelizable by—hanf g ScalaTE T SparkTE

.
—
o —
.
—_—
e,

T —
" —

Scala
transformation

T

- ~

runson _.- ~~._funson

- ~

_—
T e — —

designed for

Coq to Scala
Coq Scala !

user theorems

I .

U certify :

Rule translation
CoqTL - Scala
. by-hand :
transformation : transformation
runson L7 . runson : runson .-~ ~~<_ runson

N\ . - SS
\ _____ - Extraction \ List replaced by ‘
CoqTL < e Parélllel};ible by—hari g ScalaTE O — > |Spark TE
® o @: ® 7
. 7

~~~~~~~~ . —
_______________ - Confidence

designed for




Parallelizable CoqTL refines CoqTL

oq [ |< : ID xtracti LiSt re laced b
C -——===|P 111 1 E OII) S ITE p y,

e A CoqgTL refinement: Parallelizable CoqTL
o Designed to increase parallelization

e Confidence? Formal proof of equivalence
with standard CoqTL



Parallelizable CoqTL to ScalaTE

oq [ |< : ID xtracti \ LiSt re laced b
C -—==-| P 111 1 E OII) S ITE p y,

e An implementation written in Scala
o Manually extracted
o Executable solution as target: Scala
Transformation Engine (ScalaTE)
e Confidence ? Direct translation of pure functions



Parallelizable CoqTL refines CoqTL

()(] [ |< P ID xtracti LiSt re laced b
CoaT ————— . E on > | | ScalaTE p Y,

e A parallel implementation on top of Spark
o Replace lists by distributed lists
o Executable solution on distributed
architectures as target: SparkTE
e Confidence ? “In Spark we trust”



Simple example: Relational2Class

Table Class

+ name: String + name: String

owner owner
« | attr R o | atr

Column Attribute
+ name: String + name: String
rule Table2Class { rule Column2Attribute {
from s: RelationalTable from |
to t: ClassClass (s.name) s1: RelationalColumn
r: ClassToAttributes(t, resolveAll(s.attr)) s2: RelationalTable | s1.owner == s2
} to t: ClassAttribute (s1.name)

r: AttributeToClass(t, resolve(s2))



Running Relational2Class on SparkTE

Distributed
(c1)
(c2)
¥ (t)
"&/(m, c1)
(c1, c2)
th (C1 , t)
cl c2 (62, 1)
p (c2, c2)
“eNJ(c2, 1)
(t, c1)
(t, c2)
(t, 1)




Running Relational2Class on SparkTE

Distributed Distributed
(c1)
c2 instantiate
& Et) ) + trace-links (t) — (C|)
""V(m c1)
t (c1, c2) (c1, t) == (a)
1, t
T A R R
cl ez 2 e
b (c2, c2) | |
e(e2, ) ks [(62, 1) = (32)
(t, C1) —>
(t, c2)
(t, t)




Running Relational2Class on SparkTE

Distributed Distributed Distributed
Eg;; insta ntlate trace_lln kS ..................
& #1race-lNKS | (1) e (1) () —(cl)
\OVEZ c1) ’ (€1, 1) ==(al)
Tl Jew—enf\ [l —e
A S R vontem|
°1 2 2, o1) ‘wacodinks:
p (c2, c2) /\(t) — (cl)
PN(C2,1) e | (02, ) e (a2) (c1,) = (at)
g c;; Riiials (€2,1) mm(a2)
' o ) =l
(t, )




Running Relational2Class on SparkTE

Distributed Distributed Distributed

apoly [ )
Eg;; instantiate " trace-links:
& + trace-links (4 cl (t) sl )
\&V% o) ——|Y ) (1, 1) == (al).
(c1, c2) 1, )= (@) \ / (62.1) mm(@2);

»[t\{ (c1, 1) cl — a1

S B Ee e B broadeastf---------oooo oo oo

¢l o2 (c2, c1) trace-links:
(02, c2) / \ () =) :
% . . : §
PaN(€2,1) | etentte 0oty — (a2) (e1,1) ==(al)
(t’ C1) — (C2, t) -(82)
(t, 02) e _)

(t, t) apply cl a2




Running Relational2Class on SparkTE

Distributed Distributed Distributed
Eg;; instantiate ey trace-llnks ..................

& + trace-links (t) (C|) (t) —(C|)

\OVEJ& c1) §(C1, t) —>(a’|)§ \
| fero—ef\ [lEn —e

cl c2 (2, c1) tracellnks __________________ | al =2

a2 62 / \ (t) —cl)

“e(c2, 1) | nstantiate — (c1,1) == (al)
Et, C;; + trace-links (02’ t) (82) (02’ t) -(82) /
(t, 1) apply cl — a2




Optimization 1: One-phase to two-phases approach

Standard CoqTL specification
o Single phase
o A rule generates output element and output link at the same time
o Easy for reasoning

e Two independent versions of CoqTL: Standard + Parallelizable
e A two-phases implementation:

o first the output elements

o then the output links



Optimization 2: Tuples by rule

Standard CoqTL solution:

e A recursive algorithm

e Distribution at the last iteration

e T[oo many useless tuples

e |eads to an imbalance in partitions

Solution:

e Generate only the useful tuples

e Instead of iterating on elements, we iterate on rules
e More balanced partitions



Optimization 3: Use of traces

Standard CoqTL specification
o Complete application of rules for creating links
(including instantiate)

Solution
e Use the trace-links in the apply phase
e |terate on trace-links
o Find corresponding rule
o Find all involved output element (from other rules)
m Using resolve function
o Creates the output link



Experimental setup

Goal: e Study the parallelization (scalability) of SparkTE

Versions: e Scala2.1?2
e Spark 3.1.1 (Hadoop 2.7)

Cluster: e Grid’5000 platform
o paravance (Rennes): 2x8 cores/CPU, Intel Xeon E5-2620
memory of 128GB
o gros (Nancy): 2x18 cores/CPU, Intel Xeon Gold 5220
memory of 96GB

Case studies: @ Relational2Class multivalued attributes
e [MDb “find couples” from TTC
e DBLP query



First experiment

o Cores 1(1) 2(1) 4 (2) 8 (2)
3 _ (machines)
>
% (3 complexity
Relational2Class | 150 | 290 Low | times (s) 27.02 32.50 13.17 11.91
speedup 1.00 0.84 2.13 2.31
DBLP 700 | 1886 Medium | times (s) 0.83 0.35 0.56 0.84
speedup 1.00 2.37 1.49 0.99
IMDb 440 | 1968 High | times (s) 38.85 22.01 18.33 11.61
speedup 1.00 1.74 2.09 3.30




Potential parallelization

Introduced simulated computation time on phases

Oms -® 120ms -®- 500ms 2000ms - = = = jdeal Speedup
50ms -®- 250ms 1000ms - = = = 50% of ideal speedup

30- iz 30-
,/
rd
”’
’l
o
) 3
® 20- .7 D 20-
() (]
o o
a 7
= 2
© ©
()] - —
O' ! 1 O"

12 4 8 16 32
number of cores

number of cores

Model of 150 elements and 290 links, up 32 Model of 600 elements and 1060 links, up
cores on 4 machines (on paravance) 128 cores on 8 machines (on gros)



Conclusion and future work

e Contribution
o A CoqTL refinement: Parallelizable CoqTL

o An executable counterpart, written in Scala
o A parallel implementation of the executable part on top of Spark

e Conclusive remarks

o  We have shown a potential scalability for different operational cost

o Many challenges (caused by memory issues, distribution, Spark overhead)
e Future work

o  Write a certified compiler from CoqTL to Scala

o Study other approaches supported by Spark (e.g., GraphX)

o Integrate the work with persistence solution (e.g., HDFS)



Conclusion and future work

e Contribution
o A CoqTL refinement: Parallelizable CoqTL

o An executable counterpart, written in Scala
o A parallel implementation of the executable part on top of Spark

e Conclusive remarks

o  We have shown a potential scalability for different operational cost

o Many challenges (caused by memory issues, distribution, Spark overhead)
e Future work

o  Write a certified compiler from CoqTL to Scala

o Study other approaches supported by Spark (e.g., GraphX)

o Integrate the work with persistence solution (e.g., HDFS)

Questions ?



