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Hardware Solution
Multi-core, and distributed
architecture

Software Solution
Framework for large-data
management

Formalism and Software
Curry-Howard Correspondence
Proof-assistants

No bridge (in a MDE context)
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An automated way of modifying 
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CoqTL

Properties

Background: CoqTL

● A DSL for expressing model 
transformations with Coq

● Allow to express user properties
● Proving mechanism

Reference: Zheng Cheng, Massimo Tisi, Rémi 
Douence. CoqTL: A Coq DSL for Rule-Based Model 
Transformation. Software and Systems Modeling, 
Springer Verlag, In press, pp.1-15.  

Transformation

User defined
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Background: Apache Spark
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▪ Master & Workers architecture
▪ In-memory computation

▪ High-order functions
▪ Ease parallelism 
▪ Distributed lists

▪ Widely-used by data analysts
▪ Many examples
▪ High-confidence

  A unified analytics engine for large-scale data processing



Objective
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● Bridge correctness (Coq) to a distributed solution (Spark)
● Have two distinct specifications

1. One designed for reasoning (CoqTL)
2. One for the actual execution, specifying the optimizations 

(Parallelizable CoqTL)
➢ Proof of equivalence between those

● Have an executable solution on top of Spark: SparkTE



Coq to Scala
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Parallelizable CoqTL refines CoqTL 
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CoqTL Parallelizable
CoqTL

refines ScalaTE SparkTE
Extraction

by-hand
List replaced by
distributed lists

1 2 3

● A CoqTL refinement: Parallelizable CoqTL
○ Designed to increase parallelization

● Confidence? Formal proof of equivalence 
with standard CoqTL



Parallelizable CoqTL to ScalaTE
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CoqTL Parallelizable
CoqTL

refines ScalaTE SparkTE
Extraction

by-hand
List replaced by
distributed lists

1 2 3

● An implementation written in Scala
○ Manually extracted
○ Executable solution as target: Scala 

Transformation Engine (ScalaTE)
● Confidence ? Direct translation of pure functions



Parallelizable CoqTL refines CoqTL 
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CoqTL Parallelizable
CoqTL

refines ScalaTE SparkTE
Extraction

by-hand
List replaced by
distributed lists

1 2 3

● A parallel implementation on top of Spark
○ Replace lists by distributed lists 
○ Executable solution on distributed 

architectures as target: SparkTE
● Confidence ? “In Spark we trust”



Simple example: Relational2Class
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Column

+ name: String

owner

attr*

Attribute

+ name: String

owner

attr*

rule Table2Class {
from s: RelationalTable 
to t: ClassClass (s.name)
    r: ClassToAttributes(t, resolveAll(s.attr))

}

rule Column2Attribute {
from 
    s1: RelationalColumn 
    s2: RelationalTable | s1.owner == s2
to t: ClassAttribute (s1.name)
    r: AttributeToClass(t, resolve(s2))

}

Table

+ name: String

Class

+ name: String
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Running Relational2Class on SparkTE
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Running Relational2Class on SparkTE
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Running Relational2Class on SparkTE
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Optimization 1: One-phase to two-phases approach
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Standard CoqTL specification 
○ Single phase
○ A rule generates output element and output link at the same time
○ Easy for reasoning

● Two independent versions of CoqTL: Standard + Parallelizable
● A two-phases implementation:

○ first the output elements 
○ then the output links



Optimization 2: Tuples by rule
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Standard CoqTL solution:
● A recursive algorithm
● Distribution at the last iteration
● Too many useless tuples
● Leads to an imbalance in partitions

Solution: 
● Generate only the useful tuples
● Instead of iterating on elements, we iterate on rules
● More balanced partitions



Optimization 3: Use of traces
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Standard CoqTL specification
○ Complete application of rules for creating links

(including instantiate)

Solution
● Use the trace-links in the apply phase
● Iterate on trace-links

○ Find corresponding rule
○ Find all involved output element (from other rules)

■ Using resolve function 
○ Creates the output link



Experimental setup
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Case studies: ● Relational2Class multivalued attributes
● IMDb “find couples” from TTC
● DBLP query  

Versions: ● Scala 2.12
● Spark 3.1.1 (Hadoop 2.7)

Cluster: ● Grid’5000 platform
○ paravance (Rennes): 2x8 cores/CPU, Intel Xeon E5-2620

memory of 128GB 
○ gros (Nancy): 2x18 cores/CPU, Intel Xeon Gold 5220

memory of 96GB 

Goal: ● Study the parallelization (scalability) of SparkTE



First experiment
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Cores 
(machines)

1 (1) 2 (1) 4 (2)  8 (2)

Relational2Class 150 290 Low times (s) 27.02 32.50 13.17 11.91

speedup 1.00 0.84 2.13 2.31

DBLP 700 1886 Medium times (s) 0.83 0.35 0.56 0.84

speedup 1.00 2.37 1.49 0.99

IMDb 440 1968 High times (s) 38.85 22.01 18.33 11.61

speedup 1.00 1.74 2.09 3.30

elem
ents

links complexity



Potential parallelization
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ideal speedup
50% of ideal speedup

Model of 150 elements and 290 links, up 32 
cores on 4 machines (on paravance)

Model of 600 elements and 1060 links, up 
128 cores on 8 machines (on gros)



Conclusion and future work
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● Contribution
○ A CoqTL refinement: Parallelizable CoqTL
○ An executable counterpart, written in Scala
○ A parallel implementation of the executable part on top of Spark

● Conclusive remarks
○ We have shown a potential scalability for different operational cost
○ Many challenges (caused by memory issues, distribution, Spark overhead) 

● Future work
○ Write a certified compiler from CoqTL to Scala 
○ Study other approaches supported by Spark (e.g., GraphX)
○ Integrate the work with persistence solution (e.g., HDFS)
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Questions ?


