
Towards Transparent Combination of Model
Management Execution Strategies for Low-Code

Development Platforms

Jolan Philippe12, Héléne Coullon123, Massimo Tisi12, and Gerson Sunyé24

IMT Atlantique1 , LS2N2, Inria3, Université de Nantes4

October 20th, 2020

Introduction
LCDP manipulates model: ● At design time

● At runtime

Introduction
LCDP manipulates model:

3

● At design time
● At runtime

Large models? Modification frequency? Connectivity?
NEED OF ADAPTED TECHNIQUES

Introduction
LCDP manipulates model:

4

● At design time
● At runtime

Large models? Modification frequency? Connectivity?

Running example: Build a LCDP to manipulate social networks
● Large datasets (huge social graph)
● Often modified
● Large number of users

NEED OF ADAPTED TECHNIQUES

Transformation Tool Contest 2018
● Query:

What is the most debated post in a
social network?

5

Transformation Tool Contest 2018
● Query:

What is the most debated post in a
social network?
Score(post) = 10 * #(post.comments)

 + #(post.comments.likes)

6

Transformation Tool Contest 2018
● Query:

What is the most debated post in a
social network?
Score(post) = 10 * #(post.comments)

 + #(post.comments.likes)
● #(post.comments) = 6

7

Transformation Tool Contest 2018
● Query:

What is the most debated post in a
social network?
Score(post) = 10 * #(post.comments)

 + #(post.comments.likes)
● #(post.comments) = 6
● #(post.comments.likes) = 5

8

Transformation Tool Contest 2018
● Query:

What is the most debated post in a
social network?
Score(post) = 10 * #(post.comments)

 + #(post.comments.likes)
● #(post.comments) = 6
● #(post.comments.likes) = 5
● Score(post) = 65

9

Many execution strategies

10

● Reactivity
○ Incrementality
○ Laziness

● Parallelism
○ Data-Parallelism
○ Task-Parallelism
○ Asynchronism

Many execution strategies

11

● Reactivity
○ Incrementality
○ Laziness

● Parallelism
○ Data-Parallelism
○ Task-Parallelism
○ Asynchronism

● Diversity of solutions
● Many possible implementations
● Adapted for different needs

Many execution strategies

12

● Reactivity
○ Incrementality
○ Laziness

● Parallelism
○ Data-Parallelism
○ Task-Parallelism
○ Asynchronism

● Diversity of solutions
● Many possible implementations
● Adapted for different needs

● Need of knowledge (expertise)
● Need of configuration
● Not lowcode friendly

Multi-strategy for parallelism
Implementation of strategies using

Support for distributed data structures:

Model as graphs: A node per class, an edge per relationship.

13

● High-order functions
● MapReduce
● GraphX (+ Pregel)

Direct implementation
1. Get all the comments from a post (recursive DFS)
2. Count the likes (from previous comments)
3. Calculate the score

14

Direct implementation
1. Get all the comments from a post (recursive DFS)
2. Count the likes (from previous comments)
3. Calculate the score

15

Pros Cons
Easy to write
Easy to read

We do not expect
good

performances

MapReduce implementation
1. Parallel Map + Reduce: a score by submission
2. Accumulation of sub-scores (recursive DFS) for a given

post

16

(0, 2) (0, 1) (2, 0)

(3, 0)

(0, 0)

(0, 2)

(1, 0)

MapReduce implementation
1. Parallel Map + Reduce: a score by submission
2. Accumulation of sub-scores (recursive DFS) for a given

post

17

(0, 2) (0, 1) (2, 0)

(3, 0)

(0, 0)

(0, 2)

(1, 0)

(3, 0) => Score = 30

MapReduce implementation
1. Parallel Map + Reduce: a score by submission
2. Accumulation of sub-scores (recursive DFS) for a given

post

18

(0, 2) (0, 1) (2, 0)

(3, 0)

(0, 0)

(0, 2)

(1, 0)

(3, 2) => Score = 32

MapReduce implementation
1. Parallel Map + Reduce: a score by submission
2. Accumulation of sub-scores (recursive DFS) for a given

post

19

(0, 2) (0, 1) (2, 0)

(3, 0)

(0, 0)

(0, 2)

(1, 0)

(3, 3) => Score = 33

MapReduce implementation
1. Parallel Map + Reduce: a score by submission
2. Accumulation of sub-scores (recursive DFS) for a given

post

20

(0, 2) (0, 1) (2, 0)

(3, 0)

(0, 0)

(0, 2)

(1, 0)

(5, 3) => Score = 53

MapReduce implementation
1. Parallel Map + Reduce: a score by submission
2. Accumulation of sub-scores (recursive DFS) for a given

post

21

(0, 2) (0, 1) (2, 0)

(3, 0)

(0, 0)

(0, 2)

(1, 0)

(5, 3) => Score = 53

MapReduce implementation
1. Parallel Map + Reduce: a score by submission
2. Accumulation of sub-scores (recursive DFS) for a given

post

22

(0, 2) (0, 1) (2, 0)

(3, 0)

(0, 0)

(0, 2)

(1, 0)

(6, 3) => Score = 63

MapReduce implementation
1. Parallel Map + Reduce: a score by submission
2. Accumulation of sub-scores (recursive DFS) for a given

post

23

(0, 2) (0, 1) (2, 0)

(3, 0)

(0, 0)

(0, 2)

(1, 0)

(6, 5) => Score = 65

MapReduce implementation
1. Parallel Map + Reduce: a score by submission
2. Accumulation of sub-scores (recursive DFS) for a given

post

24

Pros Cons
Highly parallel

solution
Not fit for frequently

modified model

Pregel implementation
1. Initial step: parallel Map
2. Reachability by propagation (Pregel) from a post

a. message passing
b. with accumulators

3. Calculate the score from accumulators

25

Pregel implementation
1. Initial step: parallel Map
2. Reachability by propagation (Pregel) from a post

a. message passing
b. with accumulators

3. Calculate the score from accumulators

26

Pregel implementation
1. Initial step: parallel Map
2. Reachability by propagation (Pregel) from a post

a. message passing
b. with accumulators

3. Calculate the score from accumulators

27

Nb_comments = 0
Nb_likes = 0

Pregel implementation
1. Initial step: parallel Map
2. Reachability by propagation (Pregel) from a post

a. message passing
b. with accumulators

3. Calculate the score from accumulators

28

Nb_comments = 3
Nb_likes = 3

Pregel implementation
1. Initial step: parallel Map
2. Reachability by propagation (Pregel) from a post

a. message passing
b. with accumulators

3. Calculate the score from accumulators

29

Nb_comments = 5
Nb_likes = 3

Pregel implementation
1. Initial step: parallel Map
2. Reachability by propagation (Pregel) from a post

a. message passing
b. with accumulators

3. Calculate the score from accumulators

30

Nb_comments = 6
Nb_likes = 5

Pregel implementation
1. Initial step: parallel Map
2. Reachability by propagation (Pregel) from a post

a. message passing
b. with accumulators

3. Calculate the score from accumulators

31

Nb_comments = 6
Nb_likes = 5

Pregel implementation
1. Initial step: parallel Map
2. Reachability by propagation (Pregel) from a post

a. message passing
b. with accumulators

3. Calculate the score from accumulators

32

Nb_comments = 6
Nb_likes = 5
 = > Score = 65

Pregel implementation
1. Initial step: parallel Map
2. Reachability by propagation (Pregel) from a post

a. message passing
b. with accumulators

3. Calculate the score from accumulators

33

Pros Cons
Easy to write

Strong engine (perf)
Hard to read

Limited parallelism

Multi-Strategy implementation

34

● Direct implementation + Pregel
1. Parallel Map + Reduce: a score by comment
2. Accumulation of sub-scores (DFS to Pregel) for a given

post

● MapReduce implementation + Pregel
1. Get all the comments from a post (DFS to Pregel)
2. Count the likes (from previous comments)
3. Calculate the score

Experiments

35

Execution of the score functions on all posts:
● 5 Strategies
● 30 executions each
● 8 datasets ((1274 nodes, 2533 edges) to (115121 nodes, 286502

edges))

Single machine configuration:
● Java 1.8 with Scala 2.13.2 (Spark 3.0.1)
● Intel(R) Core(TM) i7-8650U CPU

○ 8 cores
○ 1.90GHz

● Memory of 32 GB

Results

36

Dataset Speed-up (compared to Naive Sequential)

 # # users # posts # comments # likes Naive
Sequential

Naive
Parallel Pregel MapReduce OCL +

Pregel
MapReduce

+ Pregel

1 80 554 640 6 1x 0.40x 10.30x 5.82x 9.40x 4.63x

2 889 1064 118 24 1x 0.39x 0.36x 0.46x 0.44x 0.46x

3 1845 2315 190 66 1x 0.51x 0.68x 0.85x 0.66x 0.71x

4 2270 5056 204 129 1x 0.27x 0.35x 2.34x 0.15x 2.96x

5 5518 9220 394 572 1x 4.25x 5.21x 4.17x 4.68x 4.03x

6 10929 18872 595 1598 1x 4.68x 2.83x 2.39x 1.97x 3.91x

7 18083 39212 781 4770 1x 4.07x 4.12x 4.58x 5.17x 3.27x

8 37228 76735 1158 13374 1x 7.28x 9.52x 7.61x 9.66x 9.22x

Results

37

Dataset Speed-up (compared to Naive Sequential)

 # # users # posts # comments # likes Naive
Sequential

Naive
Parallel Pregel MapReduce OCL +

Pregel
MapReduce

+ Pregel

1 80 554 640 6 1x 0.40x 10.30x 5.82x 9.40x 4.63x

2 889 1064 118 24 1x 0.39x 0.36x 0.46x 0.44x 0.46x

3 1845 2315 190 66 1x 0.51x 0.68x 0.85x 0.66x 0.71x

4 2270 5056 204 129 1x 0.27x 0.35x 2.34x 0.15x 2.96x

5 5518 9220 394 572 1x 4.25x 5.21x 4.17x 4.68x 4.03x

6 10929 18872 595 1598 1x 4.68x 2.83x 2.39x 1.97x 3.91x

7 18083 39212 781 4770 1x 4.07x 4.12x 4.58x 5.17x 3.27x

8 37228 76735 1158 13374 1x 7.28x 9.52x 7.61x 9.66x 9.22x

Results

38

Dataset Speed-up (compared to Naive Sequential)

 # # users # posts # comments # likes Naive
Sequential

Naive
Parallel Pregel MapReduce OCL +

Pregel
MapReduce

+ Pregel

1 80 554 640 6 1x 0.40x 10.30x 5.82x 9.40x 4.63x

2 889 1064 118 24 1x 0.39x 0.36x 0.46x 0.44x 0.46x

3 1845 2315 190 66 1x 0.51x 0.68x 0.85x 0.66x 0.71x

4 2270 5056 204 129 1x 0.27x 0.35x 2.34x 0.15x 2.96x

5 5518 9220 394 572 1x 4.25x 5.21x 4.17x 4.68x 4.03x

6 10929 18872 595 1598 1x 4.68x 2.83x 2.39x 1.97x 3.91x

7 18083 39212 781 4770 1x 4.07x 4.12x 4.58x 5.17x 3.27x

8 37228 76735 1158 13374 1x 7.28x 9.52x 7.61x 9.66x 9.22x

Solution

● Several strategies for model management: Example with parallelism
Not all adapted for every situation

● Need of additional metadata
○ Size and topology of model
○ Kind of operation and their frequency
○ (Available architecture)

● Adaptive engine based on a multi-strategy approach

39

Conclusion
● Many execution strategies
● As a concrete example: several parallel strategies (TTC18)
● There is no solution adapted in every situation
● Introduction of a multi-strategy engine

40

Conclusion
● Many execution strategies
● As a concrete example: several parallel strategies (TTC18)
● There is no solution adapted in every situation
● Introduction of a multi-strategy engine

41

Perspective and future work
● Implement and experiment reactive (incremental and lazy) aspects
● Conduct additional experiments:

○ Larger dataset
○ Distributed architecture
○ Specific topologies

Conclusion
● Many execution strategies
● As a concrete example: several parallel strategies (TTC18)
● There is no solution adapted in every situation
● Introduction of a multi-strategy engine

42

Perspective and future work
● Implement and experiment reactive (incremental and lazy) aspects
● Conduct additional experiments:

○ Larger dataset
○ Distributed architecture
○ Specific topologies

Questions ?

