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● At design time
● At runtime

Large models? Modification frequency? Connectivity? 

Running example: Build a LCDP to manipulate social networks
● Large datasets (huge social graph)
● Often modified
● Large number of users

NEED OF ADAPTED TECHNIQUES
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Transformation Tool Contest 2018
● Query: 

What is the most debated post in a 
social network?
Score(post) = 10 * #(post.comments) 

    + #(post.comments.likes)
● #(post.comments) = 6
● #(post.comments.likes) = 5
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● Reactivity 
○ Incrementality
○ Laziness

● Parallelism
○ Data-Parallelism
○ Task-Parallelism
○ Asynchronism

● Diversity of solutions
● Many possible implementations 
● Adapted for different needs

● Need of knowledge (expertise)
● Need of configuration
● Not lowcode friendly



Multi-strategy for parallelism 
Implementation of strategies using

Support for distributed data structures:

Model as graphs: A node per class, an edge per relationship.
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● High-order functions
● MapReduce
● GraphX (+ Pregel)



Direct implementation
1. Get all the comments from a post (recursive DFS)
2. Count the likes (from previous comments)
3. Calculate the score
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Pros Cons
Easy to write
Easy to read

We do not expect 
good 

performances
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2. Accumulation of sub-scores (recursive DFS) for a given 

post
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MapReduce implementation
1. Parallel Map + Reduce: a score by submission
2. Accumulation of sub-scores (recursive DFS) for a given 

post
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Pros Cons
Highly parallel 

solution
Not fit for frequently 

modified model



Pregel implementation
1. Initial step: parallel Map
2. Reachability by propagation (Pregel) from a post

a. message passing
b. with accumulators

3. Calculate the score from accumulators
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Pregel implementation
1. Initial step: parallel Map
2. Reachability by propagation (Pregel) from a post

a. message passing
b. with accumulators

3. Calculate the score from accumulators
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Pros Cons
Easy to write

Strong engine (perf)
Hard to read

Limited parallelism



Multi-Strategy implementation
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● Direct implementation + Pregel
1. Parallel Map + Reduce: a score by comment
2. Accumulation of sub-scores (DFS to Pregel) for a given 

post

● MapReduce implementation + Pregel
1. Get all the comments from a post (DFS to Pregel)
2. Count the likes (from previous comments)
3. Calculate the score



Experiments
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Execution of the score functions on all posts:
● 5 Strategies 
● 30 executions each
● 8 datasets ((1274 nodes, 2533 edges) to (115121 nodes, 286502 

edges))

Single machine configuration:
● Java 1.8 with Scala 2.13.2 (Spark 3.0.1)
● Intel(R) Core(TM) i7-8650U CPU

○ 8 cores
○ 1.90GHz

● Memory of 32 GB 



Results

36

Dataset Speed-up (compared to Naive Sequential)

 # # users # posts # comments # likes Naive
Sequential

Naive
Parallel Pregel MapReduce OCL + 

Pregel
MapReduce 

+ Pregel

1 80 554 640 6 1x 0.40x 10.30x 5.82x 9.40x 4.63x

2 889 1064 118 24 1x 0.39x 0.36x 0.46x 0.44x 0.46x

3 1845 2315 190 66 1x 0.51x 0.68x 0.85x 0.66x 0.71x

4 2270 5056 204 129 1x 0.27x 0.35x 2.34x 0.15x 2.96x

5 5518 9220 394 572 1x 4.25x 5.21x 4.17x 4.68x 4.03x

6 10929 18872 595 1598 1x 4.68x 2.83x 2.39x 1.97x 3.91x

7 18083 39212 781 4770 1x 4.07x 4.12x 4.58x 5.17x 3.27x

8 37228 76735 1158 13374 1x 7.28x 9.52x 7.61x 9.66x 9.22x
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Solution

● Several strategies for model management: Example with parallelism
Not all adapted for every situation

● Need of additional metadata
○ Size and topology of model
○ Kind of operation and their frequency
○ (Available architecture)

● Adaptive engine based on a multi-strategy approach
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Perspective and future work
● Implement and experiment reactive (incremental and lazy) aspects
● Conduct additional experiments:

○ Larger dataset
○ Distributed architecture
○ Specific topologies
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Perspective and future work
● Implement and experiment reactive (incremental and lazy) aspects
● Conduct additional experiments:

○ Larger dataset
○ Distributed architecture
○ Specific topologies

Questions ?


