PySke: Algorithmic Skeletons for Python

Jolan Philippel? and Frédéric Loulergue!

INorthern Arizona University - Flagstaff, AZ (USA)
2IMT Atlantique - Nantes (France)

October 18, 2019

35

This project has received funding from the European Union's
Horizon 2020 research and innovation programme under the Marie
Sktodowska-Curie grant agreement n°® 813884.

it [owcomote

Write a parallel program is a difficult task for casual programers.

Example: duplicated code on each processor for average
calculation (Python):

mpidpy MPI

comm = MPI.COMM_WORLD
pid, nprocs = comm.Get_rank(), comm.Get_size()

average (data) :
size = len(data)

min = 0
i range (pid) :
min += int(size / nprocs) + (1 i < size % nprocs
0)
max = min + int(size / nprocs) + (1 pid < size %
nprocs 0) +1

local_sum = sum(datal[min:max])
global_sum = comm.allreduce(local_sum, op=MPI_SUM)
global_sum / size

35

Python + Skeletons

Difficulties:

>

v

v

Communications must be explicit: whom? what?
Distribution: how make a balanced distribution

Error-prone: low-level primitives use

35

Python + Skeletons

Difficulties:

» Communications must be explicit: whom? what?

v

Distribution: how make a balanced distribution
» Error-prone: low-level primitives use

> ...

Our solution: PySke , a Python Skeletons library

Python

v

v

v

v

Python is cool (but pythons are not)

OOP and functional programming (lambda calculus) aspects
A popular language in the programming community
Academic-friendly for informatics (applied CS)

5/35

Python

One of the most searched language on Google

Interest over time

|«

o <L

019 (
Python 100 :
Java 92
Javascript 4
——‘M\,— o .
c 31
Average Sep30,2018 Feb3, 201 2019

Source: Google Trends

6/35

Python

Stack Overflow questions
Growth of major programming languages
Based on Stack Overflow question views in World Bank high-income countries

:-fjja\"’\}ggcnr\pt

“-java

9%
=
=5
g
= D Tt
] R
8
5
®
ES
3
= 6%
(=
S
k7
5
]
Z
c == php
2
= e cht
o
e

0%

2012 2014 2016 2018

Time

Source: StackOverflow blog 7/35
/

Skeletons

Wikipedia: “In computing, algorithmic skeletons, or parallelism
patterns, are a high-level parallel programming model for parallel
and distributed computing.”

» Parallel implementation of a computation pattern
> A high abstraction for parallelism
» Defined by Murray Cole (1989)

PySke targets skeletons on distributed data-structures.

35

Skeletons libraries

SkeTo C++ Multidimensional arrays, lists, matrices
SkePu C++ (GPU) Arrays, vectors

Accelerate Haskell (GPU) Array

Muskel Java/RMI Clusters, networks, and grids
OSL C++ Lists and exceptions

Delite C++ (CPU and GPU) | Compiler

parmap OCaml Lists

BSML OCaml Vectors

DatTel C++ Templates

Muesli C++ (CPU and GPU) | Arrays, (sparse) matrices, tasks
eSkel C Tasks

MalLLBa CH++ Tasks

OCamlP3L (and Skml) OCaml Tasks

Lithium, Calcium, Skandium | Java Tasks

Eden Haskell Process

Quaff C++ Tasks

MapReduce, Hadoop, Pregel, Spark, etc. can be considered as

skeletal architectures

35

Skeletons libraries

SkeTo C++ Multidimensional arrays, lists, matrices
SkePu C++ (GPU) Arrays, vectors

Accelerate Haskell (GPU) Array

Muskel Java/RMI Clusters, networks, and grids
OSL C++ Lists and exceptions

Delite C++ (CPU and GPU) | Compiler

parmap OCaml Lists

BSML OCaml Vectors

DatTel C++ Templates

Muesli C++ (CPU and GPU) | Arrays, (sparse) matrices, tasks
eSkel C Tasks

MalLLBa CH++ Tasks

OCamlP3L (and Skml) OCaml Tasks

Lithium, Calcium, Skandium | Java Tasks

Eden Haskell Process

Quaff C++ Tasks

MapReduce, Hadoop, Pregel, Spark, etc. can be considered as

skeletal architectures

= Lack of skeletons on trees. + No library in Python

35

An example

Variance formula: V =157 (X; — X)? with X = 137 | X;

With PySke (global view):
(* add = lambda x, y: x + y *)
variance(l: List[float]) -> float:
n = 1l.length()

xbar = l.reduce(add) / n
v = 1l.map(num: (num-xbar)**2).reduce(add) / n

v

10/35

An example

Variance formula: V =157 (X; — X)? with X = 137 | X;

With PySke (global view):

(* add = lambda x, y: x + y *)
variance(1l: List[float]) -> float:
n = 1l.length()
xbar = l.reduce(add) / n
v = 1l.map(num: (num-xbar)**2).reduce(add) / n
v

Why List and not 1ist? An interface for lists in PySke (will
be more detailed later)

10/35

Global view

variance(l: List[float]) -> float:
n = l.length()
xbar = l.reduce(add) / n

v = l.map(num: (num-xbar)**2).reduce(add) / n
v
Old difficulties:
> : implicit communications
> : already distributed structures
> : use of defined skeletons

New problematic:

» Composition: How to write a program using PySke?

11/35

Types in PySke

Two structures:

1 Lists
» SList, an extension of 1ist, with OOP style
» PList, distributed lists

2 Trees
» BTree, asbtract class for binary trees, extended by Node and

Leaf

» LTree, linearized trees
» PTree, distributed trees
» (RNode, rose trees (arbitrary shape), but only sequential)

12/35

Primitives on lists

Instanciations:
SList() and PList () for empty lists
SList([x,y,z]): instantiate a list containing x, y and z

PList.init(f, size): instantiate a distributed list of
length size and at the index i, £(i)

PList.from_seq(1l): instantiate a distributed list from a
sequential one

PList also contains a method to_seq to get a SList from a
distributed list

13 /35

Primitives on lists

Skeletons, same signature in SList and PList classes:

» map(f) and variants: zip(1), map2(op, 1), mapi(f),
map2i(op, 1)

» reduce(op) (op must be associative for parallelism)

> variants of scan: scanr(op), scanl_last(op, e),
scanl (op, e), scanp(op, e)

> filter(p)

Only for PList:
> get_partition(), flatten(), distribute(l), balance()
» gather(pid), scatter(pid) and scatter_range(rng)

» permute(f)

14 /35

Implementation of PList

Global View

[0,1,2,3,4,5,6,7,8,9]

SPMD View
processor 0 1 2 3
content [0,1,2] [3,4,5] [6,7] (8,9]
global _size 10 10 10 10
local_size 3 3 2 2
start_index 0 3 6 8
distribution [3,3,2,2] [3,3,2,2] [3,3,2,2] [3,3,2,2]

Figure: Global and SPMD view of PList.init(lambda x:x,10)

15/35

Example: Variance

variance(input: PList[float]) -> float:

For a parallel implementation, need to use the following skeletons:
map, and reduce.

16 /35

Example: Variance

Variance on a list of 5.10" integers

o Gk

o0 ols
Number of processors

Relative speedup

Average time (5)

160
Number of processors

HPC cluster (total of 24TB of memory), 16 Intel Xeon cores per node. Individual
systems are interconnected via FDR Infiniband at a rate of 56Gbps. Ran 30 times with
the following software: Ubuntu Linux 18.04, Python 3.6.7, mpi4py 3.0.0, OpenMPI

version 2.1.1.

/35

Complex example: Fast Fourrier Transformation

Wikipedia: Convert a signal from its original domain (often time or
space) to a representation in the frequency domain and vice versa

fft(input: PList[float]) -> PList[complex]:

For a parallel implementation, need to use the following skeletons:
map, get_partition, permute, flatten, and map2i.

18/35

Example: Fast Fourrier Transformation

Fast Fourrier Transformation on a list of 212 floating point numbers

200

2

type 2
— FFTsize=248

2438
0 A
\ 1120
N
B — s
S
i —o— 197
10 o 02 1 32

Relative speedup

Mean time (s)

o

E 0 o
Number of processors Number of processors.

Shared memory machine (256 Gb), two Intel Xeon E5-2683 v4 (16 cores at 2.10 GHz).
Ran 30 times with the following software: CentOS 7, Python 3.6.3, mpidpy 3.0.2,
OpenMPI 2.6.4.

19/35

Primitives on trees

Instanciations:
Leaf (v) and Node(v, 1, r) for binary trees
LTree extends SList, adding LTree.init_from_bt(bt, m)
PTree(1t): distribute a linearized tree

PTree.init(pt, content): instantiate a new distributed
tree with a new content

PTree also contains a method to_seq to get a LTree from a
distributed tree

20/35

Primitives on trees

Skeletons, pink parametrers are only for LTree and PTree
instances

» map(fl, fn) and variants: zip(pt), map2(op, pt)

» reduce(k, phi, psi_n, psi_1, psi_r) (k must respect a
closure property for parallelism)

» vacc(k, phi, psi_n, psi_l, psi_r) (k must respect a
closure property for parallelism)

» dacc(gl, gr, c, phi_l, phi_r, psi_u, psi_d) (gl
and gr must respect a closure property for parallelism)

The closure properties are based on Kiminori Matsuzaki et. al.
works.

21/35

Closure property for reduce and uacc

Additional arguments for reduce and uacc respecting:

k:(AxBxA)— A Yr:(AxCxC)— C
Y (Ax CxA) = A P (CxCxA)— C
¢:B— C

k(1,b,r) = ¥n(l,6(b),r)
n (¢H(X7lvy) bvr) = ¢n(a¢/(/’bvr))
¥n (I7b7wn(vray)) = wn(,@/),(l,b,r))

22 /35

Closure property for dacc

Additional arguments for dacc respecting:

gl:(CxB)— C gr:(CxB)— C

¢ :B—=D ¢:B—=D

Yu: (CxD)—=D Yg: (CxD)— C
gi(c, b) Ya(c, ¢i(b))

gr(c, b)
Ya(va(c, b), b')

¢d(ca ¢r(b))
¢d(cv wu(bv bl))

23 /35

Implementation of PTree

Global View SPMD View
processor 0 1 2 3
content la,b,d,e] [c,f,g] [hJ, k] [i,],m]
[[al,[b,d,e],[c,f,g], | distribution [2,1,1,1] [21,11] [21,11] [21,11]
[h, g, K], i, 1, m]] global_index [(0,1),(1,3),(0,3),(0,3),(0,3)]
start_index 0 2 3 4
nb_segs 2 1 1 1

Figure: Global and SPMD view of PTree (1t)

24 /35

Example: Enumeration with prefix order

prefix(input: PTree[A, B]) -> PTreel[int, int]:

For a parallel implementation, need to use the following skeletons:
map, uacc, and dacc.

25 /35

Example: Enumeration with prefix order

Prefix ordering on trees (balanced and random) of
224 — 1 =16777215 elements.

150~

type
W batanced

M random

type
—~ balanced
~ random

Average time (s)
Relative speedup

100
Number o processors Number of processors

HPC cluster (total of 24TB of memory), 16 Intel Xeon cores per node. Individual
systems are interconnected via FDR Infiniband at a rate of 56Gbps. Ran 30 times with
the following software: Ubuntu Linux 18.04, Python 3.6.7, mpi4py 3.0.0, OpenMPI

version 2.1.1.

26

35

Write a better program
New challenge:

» Composition: How to write a program using the provided
primitives?

27 /35

Write a better program

New challenge:

» Composition: How to write a program using the provided
primitives?

What is the best composition of skeletons?

27 /35

Write a better program

New challenge:

» Composition: How to write a program using the provided
primitives?

What is the best composition of skeletons?
= Automatic programs rewriting

28/35

Write a better program

v

Based on rewriting rules

v

Aims at improving performances

v

Implicit mechanism: keep the high-abstraction of PySke

v

On lists only (for the moment)

v

Innermost strategy (for the moment)

29 /35

Implicit mechanism

In the first version of the API:
» Incremental execution (direct execution of calls)
In the new version:

» A computation tree is built and then ran as follows
1 an optimization of the computation tree (application of rules
with a innermost strategy; iteratively until no rules can be
applied anymore)
2 an execution of the composition corresponding to the new tree
A composition
data.methl(argsl) .meth2(args2)
becomes
wrap(data) .methl(argsl) .meth2(args2) .run()

30/35

Rewriting rules

Available rules:
» Optimization of composition of mapss

» Optimization of composition of map and reduce

» Using map_reduce (internal skeleton that is more efficient)
» Based on algebra (e.g., generalized De Morgan rules)

» Optimization using curry-ied and uncurry-ied functions

31/35

Rewriting rules

Available rules:
» Optimization of composition of mapss

» Optimization of composition of map and reduce

» Using map_reduce (internal skeleton that is more efficient)
» Based on algebra (e.g., generalized De Morgan rules)

» Optimization using curry-ied and uncurry-ied functions

Syntax (example):

Rule(
left=Term(, [Term(, [Var(), Var(1,
Var('g’)1),
right=Term(, [Var(), compose(Var(),
Var(’g’))1),
name= s
type=_List
)

31/35

Example: Dot product

pyske.core.list.plist PList PL
pyske.core.opt.list PList

> Direct implementation:

dot_product_direct(pll: PL, pl2: PL):
dot = pl2.zip(pll) .map(uncurry(mul)) .reduce(add, 0)
dot

» Wrapped structures:

dot_product_wrapped(pll: PL, pl2: PL):
pll, pl2 = PList.wrap(pll), PList.wrap(pl2)
dot = pl2.zip(pll) .map(uncurry(mul)) .reduce(add,
0).run()
dot

» Hand-written optimal:

dot_product_handwritten(pll: PL, pl2: PL):
pl2.map2(mul, pll).reduce(add, 0)

32/35

Example: Dot product

Dot product between lists of 5.107 elements (integers)

6 o
e
type 25- — —
diect

~ hand-writien

= optimized rs
gz wrapper 5., B
s 220 direct
E 4 ~
£ 8 and-vriten
g H B
g K
g & wiapper
2 &

o 1o EY o 1o

2 2
Number of processors Number of processors

Shared memory machine (256 Gb), two Intel Xeon E5-2683 v4 (16 cores at 2.10 GHz).
Ran 30 times with the following software: CentOS 7, Python 3.6.3, mpi4py 3.0.2,
OpenMPI 2.6.4.

33

35

Conclusion and Future Works

PySke : an API of Skeletons in Python

v

A lot of skeletons on lists

v

Tackle the lack of skeletons on Tree

v

High-abstraction making parallelism accessible to every kind
of users

v

Automatic optimization mechanism

34 /35

Conclusion and Future Works

PySke : an API of Skeletons in Python

» A lot of skeletons on lists
» Tackle the lack of skeletons on Tree

» High-abstraction making parallelism accessible to every kind
of users

» Automatic optimization mechanism
And now?
» Other data-structures (e.g., graphs)

» More applications (e.g., clustering; graph and model
transformation)

34 /35

Publications

» J. PHILIPPE. Systematic development of efficient programs on parallel
data structures. (Master's thesis). At School of Informatics Computing
and Cyber Systems (SICCS). Northern Arizona University, May 2019.

> J. PHILIPPE AND F. LOULERGUE. PySke: Algorithmic skeletons for
Python. In International Conference on High Performance Computing and
Simulation (HPCS). Dublin, Ireland: IEEE, Jul 2019.

» J. PHILIPPE AND F. LOULERGUE. Towards automatically optimizing
PySke programs (poster). In International Conference on High
Performance Computing and Simulation (HPCS). Dublin, Ireland: IEEE,
Jul 2019.

» F. LOULERGUE AND J. PHILIPPE. Automatic Optimization of Python
Skeletal Parallel Programs. In International Conference on Algorithms
and Architectures for Parallel Processing (ICA3PP). Melbourne,

Australia: Springer, Dec 2019.

» F. LOULERGUE AND J. PHILIPPE. New List Skeletons for the Python
Skeleton Library. In Parallel and Distributed Computing: Applications and
Technologies (PDCAT). Gold Coast, Australia: Springer, Dec 2019.

35/35

