
“This project has received funding from the European Union’s
Horizon 2020 research and innovation programme under the
Marie Skłodowska-Curie grant agreement No 813884”

Project Number: 813884

Project Acronym: Lowcomote

Project title: Training the Next Generation of Experts in Scalable Low-Code Engineering Platforms

Concepts for Multi-Paradigm Distributed
Transformation

Project GA: 813884

Project Acronym: Lowcomote

Project website: https://www.lowcomote.eu/

Project officer: Dora Horváth

Work Package: WP5

Deliverable number: D5.2

Production date: November 29th 2020

Contractual date of delivery: November 30th 2020

Actual date of delivery: November 30th 2020

Dissemination level: Public

Lead beneficiary: Institut Mines-Télécom

Authors: Benedek Horváth, Jolan Philippe, Apurvanand Sahay

Contributors: The Lowcomote partners

1

Project Abstract

Low-code development platforms (LCDP) are software development platforms on the Cloud, provided
through a Platform-as a-Service model, which allow users to build completely operational applications
by interacting through dynamic graphical user interfaces, visual diagrams and declarative languages.
They address the need of non-programmers to develop personalised software, and focus on their domain
expertise instead of implementation requirements.

Lowcomote will train a generation of experts that will upgrade the current trend of LCDPs to a new
paradigm, Low-code Engineering Platforms (LCEPs). LCEPs will be open, allowing to integrate hetero-
geneous engineering tools, interoperable, allowing for cross-platform engineering, scalable, supporting
very large engineering models and social networks of developers, smart, simplifying the development for
citizen developers by machine learning and recommendation techniques. This will be achieved by injecting
in LCDPs the theoretical and technical framework defined by recent research in Model Driven Engineer-
ing (MDE), augmented with Cloud Computing and Machine Learning techniques. This is possible today
thanks to recent breakthroughs in scalability of MDE performed in the EC FP7 research project MONDO,
led by Lowcomote partners.

The 48-month Lowcomote project will train the first European generation of skilled professionals in
LCEPs. The 15 future scientists will benefit from an original training and research programme merging
competencies and knowledge from 5 highly recognised academic institutions and 9 large and small indus-
tries of several domains. Co-supervision from both sectors is a promising process to facilitate agility of our
future professionals between the academic and industrial world.

Deliverable Abstract

Low-Code Development Platforms (LCDPs) have emerged as the next-generation Cloud-based devel-
opment platforms that utilize recent theoretical and practical advancements of Model-Driven Engineering.
On these platforms, non-technical users build models of their applications using visual diagrams, domain-
specific editors and graphical workflows, and can automatically generate source code to realize them as fully
operational applications. Therefore, LCDPs help in speeding up the development process and shortening
the time-to-market and time-to-product cycles.

Since LCDPs are cloud-based platforms deployed in a Platform-as-a-Service (PaaS) model, they have
specific needs. They need to complete complex operations with low response time to satisfy users’ needs
and their efficiency. Although there exist several technologies which follow a single execution strategy for
model-management operations, there is no technology that would automatically choose the most efficient
one, even by the combination of several others, for a given goal. Besides, to achieve responsive low-code
platforms, we need scalable reactive model transformations that are able to quickly react to events which
occur on the platform. Moreover, in LCDPs, users can create complex model-management workflows that
should be executed in the most efficient way possible, while maintaining some properties and constraints.
Specification of complex workflows within and across multiple platforms are elaborated in understanding
the process builder mechanism in an LCDP. This raises a broad research goal about using a customized
modeling constructs so that a citizen developer can use the constructs to specify the desired workflows at
a high level of abstraction.

In this deliverable, we propose ways to address the aforementioned challenges. We motivate our work
with a running example on a fictional company in social networking, which provides an LCDP to millions of
users, therefore urging the need for a highly scalable solution. We introduce state-of-the-art single-strategy
model-management solutions and urge the need for a multi-strategy approach that would automatically
choose and configure the strategies for the best execution possible. Besides, to achieve scalable reactive
model transformations, we propose the parallel extension of a state-of-the-art reactive model transformation
engine. Finally, we propose a workflow for the efficient execution of model transformation composition
scenarios across several external platforms.

2

Contents

1 Introduction 4
1.1 On the need of scalable operations . . 4
1.2 On the need of reusable and interop-

erable workflows 5
1.3 Contributions 5
1.4 Outline 5

2 Motivating Example 6
2.1 Querying a social media model 6
2.2 Transforming and checking a social

network at runtime 7
2.3 Composing model transformations . . 9

3 Cloud-based Scalable Model Management
Operations 11
3.1 Single-strategy model management . . 11

3.2 Multi-strategy model management . . 14

4 Live Model Transformations in Reactive Ap-
plications 20
4.1 Reactive transformations in VIATRA . 20
4.2 Parallel reactive model transforma-

tions in VIATRA 21
4.3 Related work 24

5 Composition of Model Transformations 25
5.1 Models to be transformed 25
5.2 Proposed steps to achieve workflows

using model transformation composi-
tion . 26

5.3 Related work 27

6 Conclusion 30

3

1 Introduction

Model-Driven Engineering (MDE) [1] is a method to develop a software by using domain models at a
higher level of abstraction. The model is either interpreted, or code is generated from it, to produce the
desired software. The Object Management Group [2] proposed the Model Driven Architecture (MDA)
which defines MDE. The MDA-based software starts by building platform-independent models which
are transformed to one or more platform-specific models, which can further be transformed to code for a
specific software. This model transformation plays a key role to determine the interoperability [3] with
other softwares along with the reusability [4] of the artifacts within or outside a particular software scenario.

Low-Code Development Platform (LCDP) 1 adopts the recent theoretical and practical advancements
of MDE and produces the software by either interpreting the model or by compiling the code generated
from the model. Both methods reduce the manual coding and thus help increase the productivity of the
application [5]. Some of the model-interpreting LCDPs are Mendix2, Appian3, Salesforce App Cloud4,
while some of the code-generating LCDPs are OutSystems5, Kony6, Alpha Software7.

1.1 On the need of scalable operations

Research in software engineering has produced several high-level abstractions to facilitate application
development. Following this line, recently emerged LCDPs propose visual interfaces for software devel-
opment, which enables citizen developers with little or no prior knowledge in programming to realize
fully operational applications [6]. As promoted by MDE, all LCDPs describe the application’s behavior
in models. In the MDE approach, models are the central and unifying point of the conception: they can
represent knowledge, architectures, and data. Models can be managed by adding, removing, updating or
querying information from them. The performance of these operations represents a research line in the
MDE community.

More specifically, model management in LCDPs has a significant need for automatic, transparent,
efficient and scalable operations for manipulating, querying and analyzing models. We identify three main
reasons for this need. First of all, the required time for responding to a graphical command is a quality factor
of the LCDP tool and has an influence on the developer’s comfort [7], and her efficiency. Therefore, LCDPs
need to complete complex operations with low response time. Moreover, since LCDPs are Cloud-based
platforms deployed in a Platform-as-a-Service (PaaS) model, they have specific needs. For instance, they can
integrate recommendation systems that may need to perform queries over the whole LCDP repository, to
propose useful patterns to the user. Optimizing such design-time operations is important and challenging,
especially when they require processing large-scale design models.

A second scalability issue arises when LCDPs need to manipulate, process, transform large instance
models, as it happens today in several engineering domains. Both Kolovos et al. in [8] and Bucchiarone
et al. in [9] have listed scalability of model transformations as one of the key challenges in MDE. Efficiently
running these operations, in terms of memory use and execution time, on very large models with millions
of elements is a challenging task. The challenge is multiplied in case of distributed models and distributed
execution environments. Although model transformation is a widely researched area, state-of-the-art tools
lack in performance even for mid-sized models [9].

The third reason for the need of efficient model management in LCDPs is the number of concurrent
operations on the platform. Due to the potential massive use of LCDPs, there is a need to run a big number
of operations in parallel for many users. In the context of a PaaS, numerous customers may query models,
thus servers or shared databases. Hence, efficient concurrent execution of model management operations
is necessary.

To improve efficiency and scalability, recent research on model management studied parallel and con-
current programming as well as specific execution models for model management languages. These
techniques range from implementing specific execution algorithms (e. g., RETE [10]) to compiling towards
distributed programming models (e. g., MapReduce [11]). In this deliverable, we use the term execution
strategies (or strategy in short) as a general way to denote these techniques. These techniques are sometimes
qualified as paradigms in the literature, but this term may lead to confusion with programming paradigms
(functional, logic, etc.).

The diversity of strategies that have been employed poses several scientific challenges. Most model
management languages implement a single execution strategy with specific strengths and weaknesses
depending on the use case. Some existing solutions in MDE offer more than a single execution strategy but
the choice is left to the user which requires expertise on parallelism or distribution [12].

1Hereafter, the terms low-code platform and low-code development platform are used interchangeably and are abbreviated as LCDP.
2https://www.mendix.com/
3https://www.appian.com/
4https://developer.salesforce.com/platform
5https://www.outsystems.com/
6https://www.kony.com/solutions/low-code/
7https://www.alphasoftware.com/

4

https://www.mendix.com/
https://www.appian.com/
https://developer.salesforce.com/platform
https://www.outsystems.com/
https://www.kony.com/solutions/low-code/
https://www.alphasoftware.com/

Cloud computing provides a distant architecture that tackles the up-front IT infrastructure limits (e. g.,
limited number of resources). Increasing the number of available resources allows horizontal and vertical
scalability, i. e., the application remains scalable either if the number of dedicated resources, or the size of
input data, increases. In other words, the performance will not be impacted if the number of computational
units or the size of the input data increases. The only challenge then is to build a scalable program.
MapReduce, a data-distributed based framework that is designed for big data processing, offers a highly
scalable and parallel solution. Also, other frameworks, such as Spark are very popular in the Cloud. They
offer scalable solutions for model management operations.

1.2 On the need of reusable and interoperable workflows

An LCDP integrates different tools and components in order to easily develop new applications and fulfill
non-functional properties like reusability and interoperability [13]. An application consists of several pro-
cess flows which take data from different sources. To allow complex workflows within and across LCDPs
and other external platforms, the process for building a new application using customized modeling lan-
guage(s) (e. g., building a BPMN8 like modeling language) is aimed to be designed. Such a modeling
language represents workflows as models. Each step of the workflow can be regarded as a data fetching
operation (model query) or as a data combination (model transformation) operation. Besides, several
workflows can be composed into a workflow system to model complex applications. Using a process
builder to construct the complex workflows plays an important role in creating an easy-to-use platform
to build complex applications. Such workflows can be reused by storing the smaller transformations in
model repositories and automatically executing those transformations specified in the overall application’s
workflows. Also, an application can interoperate with external sources such as IFTTT or Google Maps.
Therefore, the reusability and interoperability in an LCDP is aimed to be achieved by using several com-
positions of model transformations defined in different workflows and process flows within and across
different platforms.

1.3 Contributions

In this report, we present three main contributions.
1. We first illustrate the variability of existing strategies and emphasize the need for a multi-strategy

vision for model-management where strategies can be automatically switched and combined to
address the given model-management scenario efficiently. Furthermore, we stress the need for
automatic choice and configuration of strategies to enhance the performance of LCDPs.

2. Then, we formulate reactive model transformations for LCDPs as a means to improve the response
time of these platforms. We propose an extension of a state-of-the-art reactive model transformation
engine to achieve higher throughput and lower response times on low-code platforms with frequently
occurring events.

3. Finally, all the possible workflows are defined within and across LCDPs and other external services.
Also, a research path is proposed to build a modeling language and their metamodels along with
an application-builder metamodel. Further, a composition reasoner is planned to reason about the
need for model transformation composition for different goal-to-workflow transformations. Such
workflows will use a workflow engine to orchestrate flows of data. Also, a connector is supposed
to be built to facilitate the interoperability of different LCDPs. Lastly, the literature survey on model
transformation compositions and the use of model transformations in a distributed environment is
done.

1.4 Outline

The rest of the report is organized as follows. We motivate our work with a running example in Section 2,
where a fictional company in social networking provides an LCDP to its users. After that, in Section 3
we elaborate on the use of Cloud-based infrastructures for model transformations. Section 4 introduces
live and reactive transformations for LCDPs and proposes a new approach to improve their scalability.
In Section 5 the possible composition scenarios of model transformation compositions and the proposed
work on LCDPs are described. Finally, we conclude the report and present future work in Section 6.

8http://www.bpmn.org/

5

http://www.bpmn.org/

2 Motivating Example

Social network vendors often provide specific development platforms, used by developers to build appli-
cations (or apps in short) that extend the functionality of the social network. Some networks are associated
with market-places where developers can publish such apps, and end-users can buy them. Development
platforms typically include APIs that allow analyzing and updating the social network graph. In this
report, we will consider a running case where a fictional company in social networking provides an LCDP
to its users. Through the LCDP, users will be able to write their own apps over a huge social graph [14],
represented as a model. Because of the sheer size of the model, providing an efficient solution is necessary.

Social networks are built in a graph structure, representing a model of relationships. Since these
networks are based on the interaction of people, the data is often led to be modified. The LCDP should then
consider reactive mechanisms, especially for the mutable parts of the model. Also, the size of the model
depends one the number of users. First, the maximum number of relationships among n number of users
is equal to

(n
2
)

= n!
2!(n−2)! . Trivially, this value increases with an increasing value of n. Second, the number

of submissions in the network is related to the number of users. For instance, in 2010, the Facebook graph
represented a trillion of interactions (friendships, likes, shares, etc.) [15]. Since the number of user has been
multiplied by 5 in 10 years, we theoretically expect a way more large set of data [16]. A scalable solution is
then inevitably needed.

Figure 1: The metamodel of a social network (TTC 2018)

In Figure 1 we show the simple metamodel for the social graph that we will use in the report. The
metamodel has been originally proposed at the Transformation Tool Contest (TTC) 2018 [17], and used
to express benchmarks for model query and transformation tools. In this metamodel, two main entities
belong to aSocialNetwork. First, thePosts and theComments that represent theSubmissions, and
second, the Users. Each Comment is written by a User, and is necessarily attached to a Submission
(either a Post or another Comment). Besides commenting, the Users can also like Submissions.

2.1 Querying a social media model

In this report, we focus on one particular query, also defined in TTC2018: the extraction of the three most
debated posts in the social network. To measure how debated is the post, we associate it with a numeric
score. The LCDP will have to provide simple and efficient means to define and compute this score. We
suppose the vendor to include a declarative query language for expressing such computation on the social
graph, and storing scores as derived properties of the graph (i. e., new properties of the social graph that
are computed on demand from other information in the graph).

In Listing 1, we implement the query to get the top-three debated posts in a model conforming to the
presented metamodel, using the formula defined in TTC2018. The query is written in Object Constraint
Language (OCL) [18], the most used declarative query language in MDE. In particular, we use the ATL
flavor of OCL [19].

6

1 query topPosts = SN!Post.allInstances()
2 →sortedBy(e | -e.score)
3 →subSequence(1, 3);
4

5 helper context SN!Submission def: allComments =
6 self.comments→union(self.comments
7 →collect(e | e.allComments)
8 →flatten());
9

10 helper context SN!Post def: countLikes =
11 self.allComments
12 →collect(e| e.likedBy.size())
13 →sum();
14

15 helper context SN!Post def : score =
16 10*self.allComments→size() + self.countLikes;

Listing 1: An OCL query for the first task of the TTC 2018

In this code, a score of 10 is assigned to a Post for each Comment that belongs to it. Comments belong
to a Post in a recursive manner: a Comment belongs to a Post, if it is attached either to the Post itself,
or to a Comment that already belongs to the Post. Then, a score of 1 is also added every time a belonging
Comment is liked.

The query is defined using three (attribute) helpers, that can be seen as derived properties. The first
helper, allComments (lines 5–8), collects recursively all the comments of a Submission. The second
helper, countLikes (lines 10–13) counts how many times a comment that belongs to the given post
has been liked. Then, the score of a Post is calculated by summing the result of countLikes and
the number of its belonging Comments multiplied by ten (lines 15–16). Finally, the top three Posts are
obtained by the query topPosts (lines 1–3) sorting the Posts by decreasing score, and selecting the first
three.

The simple declarative query in Listing 1 has not been defined with efficiency concerns in mind. Indeed,
since we cannot make assumptions on the background of citizen developers, our LCDP cannot presume
that they will structure the query for satisfying any performance requirement. As a result, when the number
of Users increases, soon the size of the social graph makes the computation of this query challenging. First
of all, the list Post.allInstances() (line 1) becomes too large to manipulate. Especially the full
sorting of posts (line 2) seems prohibitive. Without an efficient mechanism, the naive recomputation of
allComments each time it is called, is a further performance waste. If we consider the typical frequency
of updates for social network graphs, keeping the list of top Posts up-to-date by fully recomputing this
query on each update could consume a significant amount of infrastructure resources.

Moreover, the most efficient way to execute the query does not depend only on the given query definition
and metamodel structure, but on several characteristics of the usage scenario. A technique to optimize
a particular use case typically has significant overhead in other use cases. Factors that can influence
this choice in our example can be related to the model size (e. g., order of magnitude for the number
of Users), frequency of updates (e. g., of new Submissions), average model metrics (e. g., average
number of Comments per Post), acceptable response time for the final query (topPosts), infrastructure
constraints and resources (e. g., available memory, CPUs) and so on. In some cases techniques can be
combined, further complexifying the search for the optimal solution.

2.2 Transforming and checking a social network at runtime

As users use social media platforms, its content evolves over time. They post new pictures, share stories
and videos, comment on posts of their friends, etc. Although free speech allows citizens to share their
thoughts without restrictions, there are some sensitive topics about which it is inappropriate to talk or
most people find them disturbing. Therefore as Submissions evolve over time, its content should be
regularly checked to identify Posts and Comments that contain inappropriate content (e. g., prohibited
pictures, hate speech, forbidden symbols, fake news, etc.). As the number of Posts exponentially grows
each year [16], it is impossible to check them manually, due to the large cognitive effort and the sheer
number of the Posts that are sent each day. Therefore, we need automated methods to keep up with this
magnitude of information and to keep the platform safe and useful for its users.

To achieve this goal, there are some machine learning and AI-based approaches which apply image
recognition or linguistic (Natural Language Processing) techniques to identify and recognize such contents,
to mark them as inappropriate and to automatically remove them from the platform. These techniques
can be categorized as static checks, that are triggered as soon as the User submits the Comment or Post

7

on the platform. In case of text-based contents, these static checks can be performed quickly and with
high reliability, however for the image recognition and video processing some further research is needed
to improve the confidence of the classification.

Although the static checks are able to capture a static picture of the social graph model, they are not
able to check its dynamic evolution over time. For example, they are not able to recognize a trend, that
every time a User submits a Post on the platform, then one of her friends will also submit a Post in one
hour. In order to recognize such trends in a short time, we need to continuously monitor the evolution of
the social network graph on a large scale.

LCDP

Static checks

Properties

Formal model Model
checker

Figure 2: Model Checking as a Service workflow

Therefore we propose a Cloud-based Model Checking as a Service (MCaaS) workflow [20], depicted in
Figure 2, that employs state-of-the-art model checking algorithms to formally prove that the model satisfies
certain properties. If the model does not satisfy the property, then they return a counter-example which
demonstrates how the violation occurs, which helps engineers identify and fix the cause of the problem.

traceability

SM2TA SM2TATrace

EObject

EObject

[0..*] traces

[0..*] source

[0..*] target

source

[0..*] submissions

[1..1] submitterUser

id: EString

name: EString

Post

id: EString

timestamp: EDate

content: EString

target

Location Edge

Template

[1..1] source

[1..1] target

[1..*] location

[1..1] parentTemplate

[0..*] edge

[1..1] parentTemplate

FieldUpdate

name: EString

value: int

[0..1] action

[0..*] declarations

VariableDeclaration

name: EString

value: int

Figure 3: Source, target and traceability metamodels excerpt

Figure 3 depicts an excerpt of the source, target and traceability metamodels that are used in the verifi-
cation workflow. The source metamodel contains the User and the Post. The target metamodel is timed
automata formalism. A timed automaton is a Template that has several VariableDeclarations
(fields). Besides, it contains several Locations and Edges. Edges connect the Locations and they
can have an FieldUpdate that sets a VariableDeclaration of the Template for a given value.
From each User, a Template is instantiated in the target domain. Each Post that is submitted to the
social media platform is transformed to aLocation, anEdge and aFieldUpdate. TheEdge connects
the newly created Location to the last one. The FieldUpdate indicates that the timestamp field of
the Template has to be set for the time epoch of the Post. The translation of the corresponding elements
is illustrated by dashed arrows. During each transformation action, a traceability link (SM2TATrace) is
created, in order to incrementally update the target model according to changes in the source model.

From the target model, a model-to-text transformation creates the textual representation that can be
processed by UPPAAL, a model checker that verifies CTL expressions on timed automata [21, 22]. In order
to prove that if Alice submitted a Post on 13.11.2020 at 8:37 PM, then her friend, Bob also submitted a Post
within one hour, the Alice.timestamp == 1605299835→ (Bob.timestamp <= 1605299835 && Bob.timestamp <=
1605303435) CTL expression is evaluated by UPPAAL on the serialized target model. If the expression is
not satisfied by the target model, then the sequence of Posts sorted by their timestamp can be used as
an example trace demonstrating the violation.

The MCaaS workflow has several advantages. First of all, it utilizes the elastic scalability of the Cloud,
to adaptively tackle the high computation and memory demand of model checkers. A second advantage
is, different model checkers can be attached to the workflow and they can be started in parallel for a given
verification task, and their results can be combined together. Therefore, the most suitable (quickest) prover
can be selected for the given task, which results in a shorter verification time and a faster feedback loop.

8

2.3 Composing model transformations

Model transformation is a key concept in MDE which is applicable in an LCDP. Some of the key features
of low-code development that require model transformation are pre-built forms, reports and pages, inter-
operability with external sources such as APIs, IFTTT9, zapier10, etc. along with built-in workflows and
converting report view from grid to kanban to CSV, etc. [23].
Many smaller and simpler model transformations are chained together to realize a complex transformation
available in an LCDP. In such chaining of model transformations, pre- and post-conditions need to be
ensured while the metamodels must be chained properly as per the compatibility of model transformations.
The usability of model transformation is defined in relation with the LCDP. In this aspect, multiple
chainings of model transformations are offered so that all kinds of possible artifacts within an application
can be realized. These artifacts are models that are achieved by one or more model transformations. Also,
model transformation and its composition can be applied for the interoperability with external sources,
which is one of the key aspects in a software system that uses some kind of bridging mechanism to transform
artifacts from one software to another.
The model transformation composition can be shown using the motivation example of a social network that
can be transformed to the tabular view which could further be transformed to the HTML format. These
kinds of multiple transformations require an external chaining of transformations so that we can reuse
those transformations as and when required. Such chaining must preserve the syntactic characteristics
of the composed transformations (i. e., the source, and the target metamodels) and the semantic aspects
that will drive the automatic selection of the intermediate transformations that have to be retrieved from a
repository of existing model transformations.

Figure 4: Metamodel for table [24]

To transform the model from social network metamodel (Figure 1) to the table metamodel (Figure 4),
we need to know the logic of the source model and how it can be transformed into the target model based
on the target metamodel. For example, considering the social network metamodel, a model is created with
three Users: ”Adam”, ”Smith” and ”Evan”. Adam submitted two posts with content as ”Flood” and
”Covid19”. Smith commented on both of them. Adam replied to the comment on the content ”Covid19”.
Evan commented on Adam’s comment on ”Flood”. Meanwhile, Evan submitted one post with content as
”Earthquake”. Smith commented on this content which Adam replied swiftly followed by Evan’s reply on
the same comment. Evan also separately commented on the content ”Earthquake”.
This social network model can be transformed into tables by using corresponding rules that translate
User to Row and Submission to Cell. These transformation rules are implemented using various
transformation languages [25]. The table will be differentiated by thePosts sent by aUser and it is shown
in Table 1 and Table 2.

Flood Covid19
Adam Post, Reply3 Post, Reply2
Smith Comment1 Comment2
Evan Comment3

Table 1: Table for Adam’ post

Earthquake
Adam Post, Reply4, Reply5
Smith Comment4
Evan Comment5, Reply6

Table 2: Table for Evan’ post

Furthermore, we can transform the transformed tables into HTML code by model-to-text transforma-
tions [26]. For example, a table is transformed to HTML code by using Eclipse Generation Language

9https://ifttt.com/
10https://zapier.com/

9

https://ifttt.com/
https://zapier.com/

(EGL11) as it is shown in Listing 2.

Listing 2: Table to HTML transformation EGL code
1 <table>
2 [% for (Row in r.row) { %]
3 <tr>
4 [<% for (cell in c.cell) { %]
5 <td>[% = c.content %]</td>
6 [%}%]
7 </tr>
8 [%}%]
9 </table>

These two model transformations from social network to tables and from tables to the HTML web
page should be stored in a model repository. The research objectives in relation to model transformation
composition are the followings. First, transforming multiple models and chaining them according to their
optimized execution. In this regards, model queries are optimized in order to optimize the execution of a
model transformation. Secondly, a mechanism is required to orchestrate two or more stored transformations
so that the composition of model transformation can be done by automatically orchestrating the necessary
intermediate transformations.

11https://www.eclipse.org/epsilon/doc/egl/

10

https://www.eclipse.org/epsilon/doc/egl/

3 Cloud-based Scalable Model Management Operations

In this Section, we first introduce approaches for model management that can take advantage of a distributed
infrastructure: either by avoiding computations, or by parallelizing them. Then, we motivate the use of
an adaptive engine based on a multi-strategy approach for model management operations. Most of these
works have been published in [27].

3.1 Single-strategy model management

We outline the execution strategies that are commonly used to enhance the efficiency of model management.
The below presented strategies have been identified with their use in MDE. In this analysis, we only focus
on the strategies, regardless of the chosen language for their implementations. We also give an overview of
the existing applications of these strategies in model management tools. The two main categories of model
management tools we consider are model transformation (MT) and query (MQ). On the one hand, model
transformation is the conversion process of one or more input models to output models (model-to-model)
or text (model-to-text). A model transformation that produces a model as output can be either an in-place
(i. e., direct modification of the input model) or an out-place transformation (i. e., production of a new model
from the input one). On the other hand, a model query analyzes source models to compute the desired
data value. Finally, some general key concepts (e. g., matching), that can be used both in MT and MQ are
using strategies to improve the performances of engines. These concepts are also discussed below.

Avoiding computations

Incrementality and laziness are the main strategies used in MDE for minimizing the sequence of basic
operations needed to perform a query or transformation. They have been classified as strategies for
reactive execution in [7], since they foster a model of computation where the model management system
reacts to update and request events [28].

Incrementality

To achieve incremental execution of transformation rules, Calvar et al. designed a compiler to transform a
code written with ATL [29], a QVT-like (Query View Transformation) language to Java code. The output
program takes advantage of active operations of the language. The active mechanism works as an observer
pattern: the values are defined as mutable, and changes are notified to an external observer. From there, it
is easy to isolate what part of the model has been changed, and then to deduce what rules must be operated
again. To illustrate their proposal, they applied their evaluation to two cases including social media models
to illustrate the efficiency of the strategy for querying models that have strong user activity. This is not
the single attempt of integrating incremental aspects in ATL. In [30], Cabot et al. present an incremental
evaluation of OCL expressions that are used to specify elements of a model in ATL. They used a such
approach to state integrity preservation of models at runtime. Instead of testing the whole integrity of a
model every time it is changed, the proposed system is able to determine when, and how, each constraint
must be verified. For example, the RETE algorithm for pattern matching, presented in [31], constructs a
network to specify patterns and, at runtime, tracks matched patterns. Instead of matching a whole pattern,
the RETE algorithm will match the subparts of the pattern until getting a full match. Incrementality is
here used to update the incomplete patterns, without fully recalculating the matching for all the present
candidates. In MDE, the Eclipse VIATRA framework has an implementation of the RETE algorithm to
achieve an incremental pattern matching [32]. The choice of using an incremental algorithm is due to the
focus of the tool. Indeed, the VIATRA platform focuses on event-driven and reactive transformations (see
Section 4) thus an efficient solution has been chosen to handle multiple changes.

Laziness

Laziness is also commonly used by model management tools. In general, laziness reduces computations
by removing the ones that are not needed to answer the user requests. Indeed, by using laziness, pieces
of output are calculated only when they are needed by the user. This “call-by-need” approach is mainly
used on big models, known as Very Large Models (VLMs). Since users may want to get only a part of the
output, computing the whole query/transformation is unnecessary. In [33], Tisi et al. extended the model
transformation mechanism of ATL with laziness. Elements of the target model are firstly initialized, but
their content is generated only when a user tries to access it. To do so, the model navigation mechanism
has a tracking system, which provides the rules that must be executed to produce the target element.
In addition, the tracking system keeps information about already executed rules to avoid recomputation.
Other engines, such as Epsilon Transformation Language (ETL) 12, from the Epsilon framework, implements
a similar approach.

12https://www.eclipse.org/epsilon/doc/etl/

11

Figure 5: Metamodelisation of distributed approaches

Besides model transformation, laziness is also used in model querying. In [34], Tisi et al. redefine OCL
features with laziness aspects. For instance, operations of the language are redefined to be evaluated with
a lazy strategy. Also, the work proposes lazy collections that respect the OCL specification. The latter is
similar to the collections proposed by Willink in [35]. The OCL collections are implemented as generic Java
classes, with lazy operators. These approaches aim at tackling OCL related efficiency issues. For example,
because of the OCL collections are immutable, the successive insertion of elements in a collection would
create intermediate data structures. More generally, the composition of operation calls would cause an
evaluation of a cascade of operations. The proposed implementation of a lazy evaluation optimizes such
common cases.

Parallelizing computations

Parallelism designates the use of several processing units in order to achieve a global operation. There
exist many kinds of parallel architectures, from multi-cores to clusters of GPUs. In this section, we only
focus on the parallelism strategies that may be used to take advantage of parallel architectures, such as
Cloud infrastructure. We classify the strategies into three categories: data-parallelism; task-parallelism, both
of them being synchronous strategies; and one example of asynchronous strategy. Figure 5 presents a global
view of these approaches. Note that the works of [36, 37, 38] presented below also serve as related work
for Section 4.

Data-parallelism

In a data-parallel approach, data is split and distributed across several computation units. Then, the same
piece of program (from a single basic operation, to a complex function) is applied simultaneously on each
part of data by each processing unit without synchronization. Furthermore, additional synchronizations
and communications may be needed between processing units to correctly compute the overall result. For
instance, data may need to be merged into a single result. This computation strategy is the one followed
by the parallel algorithmic skeletons [39] on data structures [40, 41]. MapReduce [11] is an example of
programming model, designed for parallelism, that takes advantage of this strategy. However, MapReduce
is mainly adapted and implemented for distributed arrays or lists, and the approach is not directly suitable
for all types of data structures. For instance, Pregel [42] is a strategy that aims at easing parallel computations
on graphs by using a vertex-centric approach. In Pregel, graphs are specified by their vertices, each of them
embedding information on their incoming and outgoing edges. A Pregel program is iterative, and is
decomposed in three main phases: a computation on top of a vertex value, a generation of messages, and
the sending of messages through the edges of the vertex. This process is simultaneously applied to each
vertex of a graph (such as the map phase of a MapReduce process). Data-parallelism is often adopted in
case of large datasets. Indeed, to make profitable the parallel execution of a single computation on data,
the data chunks must be large enough, otherwise an overhead has to be paid without much benefits from
the parallelization effort [43, 44].

Benelallam et al. [45] use data-parallelism for distributing models among computational cores to
reduce computation time in the ATL model transformation engine. The MapReduce version of ATL makes
independent transformations of sub-parts of the model by using a local “match-apply” function. Then,
the reduction aims at resolving dependencies between map outputs. The proposed approach guarantees

12

better performance on basic cases such as the transformation of a class diagram to a relational schema. In
a more recent work [46], the same authors highlight the good impact of their strategy for data partitioning.
Instead of randomly distributing the same number of elements among the processors, they use a strategy
based on the connectivity of models. [47] illustrates how a model can be considered as a typed graph
with inheritance and containment. Considering a model as a graph data-structure, the graph technologies
can directly be applied to models. For instance, Imre et al. efficiently use a parallel graph transformation
algorithm on real-world industrial-sized models for model transformation [48]. In [49], Mezei et al. use
graph rewriting operations based on task-parallelism to distribute matching operations in large models in
their transformation tool Visual Modeling and Model Transformation (VMTS). The Henshin framework [12]
proposes to extract the matching part of its transformation rules into vertex-centric code (i. e., Pregel).
Another possibility to use Pregel in model transformation is by using a DSL, such as [50] for graph
transformation. The proposed compiler transforms the code written in the DSL into an executable Pregel
code.

All the aforementioned model query techniques can leverage only the computational power of a single
machine. To overcome this limitation, Szárnyas et al. proposed IncQuery-D, a distributed incremental
model query framework in the Cloud [51]. The framework implemented a distributed RETE network,
where each machine stores a subset of the Rete nodes which communicate with each other to update their
local caches. They proposed a distributed termination protocol to know if a model change has propagated
through the whole network.

Task-parallelism

A task-parallel program focuses on the distribution of tasks instead of data. According to [52], “a task is a
basic unit of programming that an operating system controls” within a job. This concept is often associated
to multi-threading. The grain size of tasks depends on the context of the execution. At the operating system
level, tasks may be entire programs while at the program level, they may be a single request, or a single
operation. Because of concurrency, and the limited number of processing units, task executions must be
ordered by considering both priorities, and dependencies across them. Ordering tasks in parallel are similar
to the workflow concept. Task-parallelism will be preferred to data-parallelism when tasks are complex
enough, or when the number of tasks is large enough to exploit parallelism capacities of the underlying
parallel architecture (i. e., hardware).

[53] proposes a formal description of parallelism opportunities in OCL. Two main kinds of operation
are targeted: the binary operations that can have their operands evaluated simultaneously, and the iterative
processes of independent treatments. In [36], Madani et al. use multi-threading for “select-based” operations
in Epsilon Object Language (EOL) 13, the OCL-like language of the Epsilon framework, for querying models.
The extension of the language with parallel features for selective operations have shown a non-negligible
speed-up (up to 6x with 16 cores) in their evaluations on a model conform to the Internet Movie Database
(IMDb) metamodel14. Next to query evaluation, multi-threading is also used for model transformation.
In [37], Tisi et al. present a prototype of an automatic parallelization for the ATL transformation engine,
based on task-parallelism. To do so, they just use a different thread for each transformation rule application,
and each match, without taking into account concurrency concerns (e. g., race conditions).

Asynchronism

Both data-parallelism and task-parallelism can be defined as synchronous strategies where synchronizations
are explicitly performed through communication patterns, or task dependencies. Asynchronism is another
way of programming parallelism where synchronism is not explicitly coded but implicitly handled by an
additional mechanism between processing units. For example, the Linda approach [54], is based on the
treatment of asynchronous tasks or data, shared in a common knowledge base, the “blackboard” [55]. More
specifically, in Linda several processes access a shared tuple space representing the shared knowledge of a
system. The processing units interact with the shared space by reading, and/or removing tuples.

LinTra is a Linda-based platform for model management and has several types of implementation.
First, on a shared-memory architecture (i. e., a same shared memory between processors, typically multi-
threading solutions), LinTra proposes parallel in-place transformations [38] and parallel out-place trans-
formations [56]. Both strategies have significant gains in performance, compared to sequential solutions.
Nonetheless, shared-memory architecture are fine for not too big models. Indeed, since the memory is
not distributed, a too big model could lead to out-of-memory errors. This phenomenon happens more
concretely in an out-place transformation since two models are involved during the operation. The first
prototype of distributed out-place transformations in LinTra, is presented in [56], and works with sockets
for communicating the machines. This first proposal remains naive. That is why, Burgueno et al. proposes
a more realistic prototype for transformations on distributed architecture [57]. But the use of a distributed

13https://www.eclipse.org/epsilon/doc/eol/
14http://www.imdb.com/interfaces

13

http://www.imdb.com/interfaces

architecture raises new questions: how to distribute data and, how to distribute tasks? They applied
different strategies mixing both the evaluation of tasks on a single or on multiple machines, and storing the
source and target models on the same, or on different machines. The study was conducted for the specific
IMDb test case only, and does not provide a general conclusion about the benefits of a such solution.

3.2 Multi-strategy model management

Each of the research efforts presented above exploit a single strategy for optimizing model management op-
erations. Typically, the strategy is applied in an additional implementation layer for the model management
language, e. g., an interpreter or compiler.

We say that a query or transformation engine performs multi-strategy model management if it automatically
considers different strategies in order to manipulate models in an efficient way. To the best of our knowledge,
such approach does not exist in the literature yet.

In this section, we exemplify the multi-strategy approach by implementing the OCL query of Listing 1
in different ways, using different strategies of parallelism. Our prototype is built on top of Spark15, an
engine designed for big data processing in the Cloud. The goal of this section is not to provide the most
efficient solutions for solving the given problem. Instead, it aims at illustrating the diversity of solutions,
that each having its own advantages depending on the use cases. To do so, we implemented several
solutions using different parallelism strategies and compared them. Also, this section only illustrates the
variability of single solution, and not their possible combination. Finally, we present first experimental
results to illustrate what performance benefits Spark can provide.

Implementations for Cloud architectures

In addition to parallel features of Spark on data structures, called Resilient Distributed Datasets (RDDs),
the Scala implementation of Spark proposes several APIs including a MapReduce-style one, an API for
manipulating graphs (GraphX [58] that embeds the possibility to define Pregel programs), and a SQL
interface to query data-structures. Because the framework proposes different parallel execution strategies,
we only focused on parallel approaches to illustrate the need of a multi-strategy approach. Comparing
solutions that include laziness and incrementality aspects is part of our future works. In our implementation
example, we use GraphX, in addition to its provided Pregel function, and MapReduce features. We represent
instances of SocialNetwork as a GraphX graph where each vertex is a couple of a unique identifier
and an instance of either a User or a Submission (Comment or Post). Edges represent the links of
elements of a model conforming the metamodel presented in Figure 1, labeled by a String name. We
keep exactly the same labels from the metamodel for [0..1] or [1..1] relations but we use singular names
for [0..∗] relations (e. g.,, one edge “like” for each element of the “likes” relationship). For the rest of this
section, we consider sn a GraphX representation of a SocialNetwork.

Considering that there exists an implementation for the function score, that will be detailed later in
this section, the OCL query topPosts of Listing 1 can be rewritten using Spark, as presented in Listing 6.

1 sn.vertices.filter(v => v.isInstanceOf[Post])
2 .sortBy(score(_._2), ascending=false)
3 .collect.take(3)

Figure 6: Spark implementation of a query from TTC 2018

First, the SN!Post.allInstances() statement of the OCL specification is translated into the
application of a filtering function on the vertices of the graph sn (line 1). A sorting with a decreasing
order is then applied to the score values (computed by the score function) of each vertex. The projection
_._2 returns the second element of the vertex values, that is an instance of Post, while _._1would have
returned its identifier within the graph. At the end of line 2, the current structure is still a RDD. Because of
the small number of values we aim at finally obtaining, the structure is converted into a sequential array of
values (function collect), from which we get the first three values. We can notice the similar structure
between the Spark and OCL queries. Hence, the global query can almost be directly translated from one
language to the other.

However, the scoring function can be implemented in many different ways with many different strate-
gies. We illustrate this through three implementations in the rest of this section: direct-naive, and highly-
parallel, pregel. Then we discuss these implementations and open to the multi-strategy approach.

Direct naive implementation The first implementation, namely direct-naive, shown in Listing 3, di-
rectly follows the OCL helpers from Listing 1. The first auxiliary function countLikes, corresponding

15https://spark.apache.org/

14

https://spark.apache.org/

to the homonym helper, sums the number of "like" relations for each comment of a given post (lines
13 to 18). The second auxiliary function score (lines 20 and 21) is also a direct Spark translation from
the OCL query. It uses parallelism, coupled with the lazy evaluation provided by Spark. Indeed, the
execution of operations on RDDs is not started until an action is triggered. In our example, collect
and count are these actions. Finally, the allComments function is defined recursively using GraphX
features. The direct-naive implementation of score uses three functions that are inspired by functional
languages: filter which removes all the elements of a list that do not respect a given predicate; map
that applies a function to every element; and flatMap which is a composition of map and flatten.
The latter is equivalent to flatten from Listing 1. The implementation uses an auxiliary, and recursive,
function traversal. It first gets the direct comments of a submission (line 6), and apply the same process
to its the belonging comments (lines 7 and 8). The method flatMap of lines 8 transforms the list of lists,
into a list of comments.

1 def allComments (p : Post) = {
2 // recursive function
3 def traversal (s : Submission) : List[Submission] = {
4 List(s).union(sn.triplets
5 // Get all direct comments of p as vertices
6 .filter(t => t.srcAttr == s & t.attr == "comment"))
7 .map(_.dstAttr).collect // Collect the sub comments
8 .flatMap(a => traversal(a)) // recursive application
9 }

10 traversal(p).drop(1) // Remove the post itself of the result
11 }
12

13 def countLikes (p: Post) =
14 allComments(p)
15 .map(c => sn.triplets
16 .filter(t => t.dstAttr == c & t.attr == "like")
17 .count)
18 .sum
19

20 def score (p : Post) =
21 10 * allComments(p).size + countLikes(p)

Listing 3: Direct implementation of score

MapReduce implementation Listing 4 illustrates a solution with a higher level of parallelism, namely
highly-parallel, that uses a MapReduce approach. The purpose of this third solution is to process as much
as possible operations in parallel in a first time, and then go through the graph to reduce these values.
The first step counts the number of direct sub-comments, and the number of likes, for each element of the
model, using a map and reduce-by-key composition (line 1 to 6). Because the number of likes do not the
have same importance as the number of belonging comments in the score calculation, two keys are created
for a single element: one for counting each property (i. e., number of comments and number of likes). Then
a graph-traversal operation calculates the total number of belonging comments and likes for a given post
(lines 10 to 24). However, the keys are only created if a comment, or a like, exists. Then, to initialize values,
we use a composition offind that returns an option, andgetOrElse in the case of the absence of the key.
The latter returns the value of the option if it exists, and a default value otherwise. We do not expect to gain
performances with this approach because the operations are not costly enough. However, having a highly
parallel approach largely increase the scalability of the program. One disadvantage of this implementation
is its non-reactive aspect. Indeed, without additional mechanism, all the getScore function must be
re-executed in case of change in the model.

Pregel implementation The third solution, namely pregel, proposed in Listing 5, is a Pregel-based
implementation. The main idea of this solution is, starting from a Post, counting the number of comments
and the number of likes for these comments by propagating messages through edges of the graph by using
Pregel. To do so, we declare two variables, nbComments, and nbLikes, that can be seen as aggregators,
i. e., global accumulator of values. The propagation is processed using the Pregel support of GraphX that

15

1 def getScore(): Array[((String, VertexId), Long)] = {
2 sn.triplets.filter(t => t.attr == "like" || t.attr == "comment")
3 .map(t => if (t.attr == "like") ((t.attr, t.srcId), 1L)
4 else ((t.attr, t.srcId), 10L))
5 .reduceByKey((a, b) => a + b).collect
6 }
7

8 def score(p: Post) = {
9 val individual_scores = getScores(sn)

10 def traversal(s: Submission): Long = {
11 val default = ((_, _), 0L)
12 val valLike = individual_scores
13 .find(e => e._1 == ("like", pid))
14 .getOrElse(default)._2
15 val valCom = individual_scores
16 .find(e => e._1 == ("comment", pid))
17 .getOrElse(default)._2
18 var current_score = valCom + valLike
19 sn.triplets
20 // Get all direct comments of s as vertices
21 .filter(t => t.srcAttr == s
22 & (t.attr == "like" || t.attr == "comment"))
23 .map(_.dstAttr).collect
24 // recursive application
25 .map(traversal)
26 // accumulation of sub scores
27 .foreach(score => current_score = current_score + score)
28 current_score
29 }
30 traversal(p)
31 }

Listing 4: Highly parallel implementation of score

works as follows. At each iteration, the function mergeMsg accumulates into a single value the incoming
messages (lines 31 and 32), that are stored in an iterable structure, from the previous iteration (with an initial
message defined for the first iteration). This value is used by vprog with the previous vertex vn to generate
the new vertex data vn+1. In addition to this new vertex data, messages are generated with sendMsg and sent
to vertices through edges for the next iteration. An empty message is produced by Iterator.empty.
The program stops when no message is produced for the next iteration. In our implementation, messages
are tuples of two values. The first one is boolean, specifying if the sending vertex has been reached during
the pregel execution. The second one aims at precising what value must be incremented (either the number
of comments (false), or likes (true)). The initial step of the execution (line 34) initialize the graph by
tupling the vertex values with a boolean specifying if the vertex has been reached. At the first step, only
the source (the input Post) is reached. Then an initial message (false, false) is sent to every vertex
of the graph before the execution of pregel. At the end of the execution, the score of a post is calculated
using the accumulator values.

Discussion

Comparison of solutions First, the complexity of the solutions direct-naive and pregel can be compared.
On the one hand, the complexity in time of the direct implementation of the OCL query, can be given as
the sum of the complexity of allComments and countLikes. Considering n the number of nodes,
these two complexities are defined as follows. First, allComments is a depth-first search of complexity
O(n + m) with m the number of "comment" edges (i. e., the depth of belonging comments). Second,
countLikes is composed by a depth-first search, and the map of a function whose complexity is O(n).
Then, the complexity of the mapping part is given by O(n2). Since the complexity of the sum operation is

16

1 def score(p: Post) = {
2 val nbComment = longAccumulator("comment_" + p.id)
3 val nbLike = longAccumulator("like_" + p.id)
4

5 def vprog(vid: VertexId, value: (Boolean, VertexType), msg:
(Boolean, Boolean)) = {

6 if (merged_msg._1 & !value._1)
7 // reached for the first time
8 if (merged_msg._2)
9 // True -> it is a like

10 nbLike.add(1L)
11 else
12 // False -> it is a comment
13 nbComment.add(1L)
14 // the vertex is now reached
15 (true, value._2)
16 else
17 // Either it is still not reached, or already reached

before.
18 value
19 }
20

21 def sendMsg(triplet: EdgeTriplet[(Boolean, VertexType),
EdgeType]): Iterator[(VertexId, (Boolean, Boolean))] = {

22 var res =
23 if (triplet.srcAttr._1 & !triplet.dstAttr._1) {
24 if (triplet.attr == EDGE_COMMENT)
25 res = Iterator((triplet.dstId, (true, false)))
26 if (triplet.attr == EDGE_LIKE)
27 res = Iterator((triplet.dstId, (true, true)))
28 } else { Iterator.empty }
29 }
30

31 def mergeMsg(m1: (Boolean, Boolean), m2: (Boolean, Boolean))
32 : (Boolean, Boolean) = m1
33

34 val initGraph = sn.mapVertices((id, v) => (id == pid, v))
35 initGraph.pregel(initialMsg = (false, false))(vprog, sendMsg,

mergeMsg)
36 nbComment.value * 10 + nbLike
37 }

Listing 5: Pregel implementation of score

negligible, we do not consider it in the calculation of the global complexity. By summing these values, we
obtain a complexity of O(n2 + m) for the direct implementation of the scoring function. On the other hand,
the Pregel implementation complexity is bounded by O(n2), in the case of all comments belong to the same
post. Naturally, the second solution will be preferred since its complexity is lower. However, if the model
has a small depth of belonging comments (i. e., a small value for m), the two solutions are not significantly
different.

The Pregel solution has nonetheless an important weakness. Indeed, for optimization reasons, vprog is
only applied to vertices that have received messages from the previous step. Then, considering the case
where the comments are all commented once, the vprog function will be applied to only one vertex. Hence,
the parallelism level strongly depends on the number of siblings of each comment. With Pregel, only active
vertices, i. e., vertices which received a message from the previous iteration, compute the vprog function.

17

Thus, the number of operations concurrently executed in Pregel varies from the less to the most commented
and liked element. On the contrary, the highly parallel implementation executes the processing operations
on every element of the model. In the latter, the parallelism level of graph-traversal has the same limitation
as the Pregel implementation, but always performs a less complex operation (i. e., a reduction as a sum of
integer values).

The three parallel approaches mentioned above solve the same problem, but their efficiency depends
on external parameters. We have illustrated how the topology of the model may impact the complexity,
but also how the level of parallelism may become important, what impact the cost of parallel operations
has. Thus, choosing the right paradigms can have a huge impact on performances.

Mix of solutions As mentioned at the beginning of the section, our proposed solutions do not claim
to be the most efficient ones. They are based on three parallelism strategies to illustrate the variability of
possible solutions for a given problem. Considering all the presented strategies of Section 3.1, a more robust
solution could include reactive aspects. For this particular example, mixing incrementality and parallelism
would avoid useless calculations when the score of a single post has changed. For instance, the independent
scores could be calculated once using parallelism, and, when a change occur, use incrementality to avoid
the recomputation of unchanged elements. Considering a possible deletion of a part of the model (e. g.,
deletion of a user, and then of all his posts, and comments), laziness could be incorporated to the solution,
to only recompute potential new most-debated posts.

Finally, the two first strategies (i. e., naive and highly-parallel) adopted a depth-first search strategy
for their traversal functions. The functions are implemented as recursive functions, that uses functional
patterns implemented in parallel. Nonetheless, it is possible to use a higher-level of implementation for these
functions. For instance, the iterative aspect of Pregel totally fits in this case. The different implementations
can be found in a remote directory16.

In the rest of this section, we also conducted experiments on these multi-strategy implementations. To
execute the topPosts query, a multi-strategy engine would compile it to:
• the direct-naive implementation if the depth of belonging comments is small;
• the highly-parallel solution if the score computation needs big calculation on the vertices themselves;
• the Pregel solution if the environment has few resources for parallelism;
• the mix of direct-naive, or the highly-parallel solution, with Pregel features if several conditions are

respected.

Experiments

We present here preliminary results of experiments we processed using the five different implementations
presented above. Each example ran 30 times. The relative speed-up of the different solutions, compared
to a naive sequential implementation, reported in Table 3 is the average over the 30 experiments of the
maximum value of the execution times of all the Spark processes. Note that we only collect the execution
times of score in its different implementation. The experiments have been processed on a shared memory
machine (32 GB) with an Intel(R) Core(TM) i7-8650U processor having 8 cores at 1.90 GHz. We used the
following software: Ubuntu 16.04, Java 1.8 with Scala 2.13.2 (Spark 3.0.1). The experiments have been
conducted on 8 different data sets that can be found in a GitHub repository 17.

Dataset Speed-up (compared with naive sequential)

name #users #posts #comments #likes size
Naive

Sequential
Naive

Parallel
MapReduce Pregel

Naive
+ Pregel

MapReduce
+ Pregel

1 1 80 554 640 6 154 KB x 1 x 0.40 x 5.82 x 10.30 x 9.40 x 4.63
2 2 889 1064 118 24 251 KB x 1 x 0.39 x 0.46 x 0.36 x 0.44 x 0.46
3 4 1845 2315 190 66 537 KB x 1 x 0.51 x 0.85 x 0.68 x 0.66 x 0.71
4 8 2270 5956 204 129 983 KB x 1 x 0.51 x 2.34 x 0.35 x 0.15 x 2.96
5 16 5518 9220 394 572 2 MB x 1 x 4.25 x 4.17 x 5.21 x 4.68 x 4.03
6 32 10929 18872 595 1598 4.22 MB x 1 x 4.68 x 2.39 x 2.83 x 1.97 x 3.91
7 64 18083 39212 781 4770 8.42 MB x 1 x 4.07 x 4.58 x 4.12 x 5.17 x 3.27
8 128 37228 76735 1158 13374 17.1 MB x 1 x 7.28 x 7.61 x 9.52 x 9.66 x 9.22

Table 3: Preliminary performance results of queries on a single machine

It appears clearly that all the solutions do not provide the same speed-up depending on the data-set.
The first observation is that using a parallel solution on a small data-set is not worth it. It can be explained
by the difference between the computation and the communication cost. Having communications between
processors increases the execution time of a program. To decrease the computation time of a parallel
program, the part that is executed independently on each processor must propose enough speed-up to

16https://tinyurl.com/yxb86zev
17https://tinyurl.com/y63tcl6b

18

https://tinyurl.com/yxb86zev
https://tinyurl.com/y63tcl6b

balance with the communication time. Second, there is no unique solution that is better for all the data-sets.
For the 8th data-set, Pregel looks to provide a better speed-up than the other solution. At the contrary, on
experiment 6, using Pregel seems to not be the best solution. Finally, we can observe that mixing approaches
can largely increase the performance of the query (e. g., “Naive + Pregel” on the data-set 7).

The observations do not provide a formal proof to decide what strategy is better than another one for a
given case. Additional experiments should be conducted with the following criteria:
• the use of data-sets with more specific topology (e. g., high-number of comments, and sub-comments,

for each submission),
• larger data-set (the TTC18 provides three additional, and larger, data-sets),
• the use of a distributed architecture with several nodes (e. g., Grid500018).

18https://www.grid5000.fr/

19

https://www.grid5000.fr/

4 Live Model Transformations in Reactive Applications

Reactive programming provides abstractions to express event-driven applications in which data and compu-
tation dependencies are managed automatically [59]. These applications react to events emitted by external
event sources without an explicit notion of time or prior knowledge of the sequence of events.

LCDPs can be reactive applications, in which components of the platform communicate via events
emitted by event sources. As illustrated in Figure 7, an event source can be a form on which the user is
modeling the behavior of the application. An event is created by the form, as soon as the user adds a
new input field, therefore extending the list of properties the corresponding entity has. This event is
broadcasted to a diagram in the LCDP, that shows the architectural overview of the application, and
automatically updates the figure based on the change received via the event.

User

Name:

Birthday:

Save Cancel

+ birthday

Event source

Event

Event
receiver

User

Name
Birthday

Figure 7: Reactivity example

In order to support this scenario, reactive model transformations are needed in LCDPs. Reactive
model transformations adopt principles from reactive programming for model transformations. A model
transformation rule consists of a precondition, that can be a graph pattern or model query, whose match on
the source model activates the transformation action which translates the source model elements into target
model elements. In the modeling environment, events are created from changes in the model, which cause
new matches for the transformation precondition (pattern), which in turn activates the transformation action.

To realize reactive transformations live or incremental transformations have been adopted for reactive
applications. Live or incremental model transformations are model transformations that update the target
model, based on changes in the source model by maintaining a trace model between the source and target
models (see Figure 8), and by caching the source model in memory. Therefore, if the source model changes,
then the corresponding parts of the target model can be automatically updated, by minimizing the parts
of the source model that need to be reexamined. This results in a faster execution time, compared to batch
transformations where the whole model needs to be retransformed, upon a change in the source model.

conforms
to

conforms
to

Source
MM

Trace
MM

Trace
M

Target
M

Source
M

Target
MM

conforms
to

source target

source target

Figure 8: Relations between source, target, trace models (M) and metamodels (MM)

In this section we introduce how reactivity is realized in the VIATRA model transformation language
(Section 4.1). After that, we propose an extension of reactive transformations to make them beneficial in
low-code platforms, by addressing scalability challenges there (Section 4.2). Finally, we present the related
work on incremental, reactive and parallel model query and transformation approaches (Section 4.3). Most
of the work presented in this section have been published in [60].

4.1 Reactive transformations in VIATRA

Bergmann et al. proposed the Event-driven Virtual Machine (EVM) concept for reactive model transfor-
mations in VIATRA [61]. Figure 9 provides a black-box overview of EVM. The forthcoming detailed
description of EVM is based on the work done by Bergmann et al. in [61].

The Event-driven Virtual Machine needs the rule specifications. Each rule specification consists of a model
transformation action, that defines the commands to execute, and a precondition as a graph pattern, that
should be found in the source model to activate the transformation. Besides, the EVM is waiting for events

20

Model change
Event-driven

Virtual Machine

Event

Query result
update

Rule
specifications

Figure 9: Black-box overview of the Event-driven Virtual Machine in VIATRA

from the application. Such events can be like the ones mentioned above, but they can also be events emitted
by an incremental model query engine that is continuously looking for matches of the rule preconditions in
the source model. If the query engine finds a match, then it updates its query result set, which results in the
creation of an event that is propagated to EVM. If the EVM executes a transformation action then it results in
a change in the target model. In case of endogenous transformations, this may result in a query result update,
if the incremental query engine finds a match for a graph pattern in the source model, or if a previously
found match is invalidated and disappears.

There is a scheduler inside EVM, which fires the transformation action, depending on the life-cycle of
the activation (a match of a precondition in the source model). The life-cycle is a transition system, that consists
of different phases (states), and event-triggered transitions. Each activation is associated with a phase in which
in resides. If an event occurs, which triggers a transition, then the transformation action associated with
this transition will be executed and its effects can be observed on the model. EVM provides two typical
life-cycles by default: one with the events that are created in incremental pattern matching (e. g., match
appeared, disappeared, a field of a graph pattern parameter got updated), and one that resembles batch
transformations (e. g., rules are executed at most once, as soon as their precondition matches).

EVM provides an automated mechanism to resolve conflicting activations of a rule. Two activations of a
rule are conflicting, if both of them are in an enabled state. In these cases the conflict resolver has to choose,
for which activation should the rule be executed. Built-in conflict resolvers are: FIFO, LIFO, fair random
choice, rule priority, interactive choice, custom conflict resolution algorithm [61].

Model transformation engineers can define custom life-cycles, using the events of the application for
which they need to adopt the reactive transformations. Therefore, events which occur in the application
can be directly use to trigger the execution of the transformations, which result in a reactive application.

4.2 Parallel reactive model transformations in VIATRA

Motivation

Due to the online nature of low-code platforms, users expect them to be responsive, to complete complex
operations in a short time. To develop responsive low-code platforms, we need scalable reactive model
transformations that are able to quickly react to events which occur on the platform, e. g., derived views
of the model need to be updated due to a change in the model. On the one hand, these transformations
are executed automatically, if a triggering event occurs. On the other hand, if many events concurrently
occur, and the transformation actions are long-running tasks, then congestion in their processing can arise
quickly, which hinders the performance of the platform. To achieve scalable reactive model transformations
on LCDPs, state-of-the-art reactive transformation approaches need to be improved.

In the model checking workflow, introduced in Section 2.2, Users and Posts have to be continuously
synchronized with the target, formal model to check that the specified formal property is always satisfied
by the model. In this way, we can recognize soon, if the social network evolves differently from expected.

Since the social media platform is used by hundreds of millions of users, the transformation of theUser
and their Posts should be separated from each other. Moreover, since each users submits vast amount of
content (Post, Comment) on the platform, their transformations should be distributed between different
processing units (transformation engines) to speed up the transformation process, keep the source and
target models synchronized with each other.

Moreover, each interaction (e. g., user registration, posting Submissions, sharing Posts, liking
Comments, etc.) on the social media platform, can be represented as an Event, and therefore processed by
an event-driven transformation engine. It receives the change in the source model as an Event, checks if there
is a rule specification whose precondition is satisfied by the change, and if so, then it executes the transformation
action. In the following subsections we propose a scalable, parallel reactive model transformation engine
to achieve this goal.

21

Proposed approach

Parallelism is a frequently used means to speed-up the execution of independent data processing. In order
to achieve better execution time of reactive model transformations in parallel, we are going to extend the
EVM for task-parallel execution mode, as depicted in Figure 10.

TM 2

model change

 query
match set

 query
match set

TM 1 TM 3

Source
Model

Incremental
Query Engine

Target
Model

EVM1 EVM2 EVM3

Figure 10: Parallel reactive model transformation in VIATRA

An incremental model query engine will be continuously looking for matches of transformation rule
preconditions in the source model. To process the frequently occurring events in the application, we will
have separate EVM instances. Each of them will be responsible for the execution of certain transformation
rule specifications (tasks), which have different preconditions. The query engine incrementally propagates
the matches of the preconditions in the source model, to every EVM instance. If an EVM instance has a
rule specification with the same precondition as the one that is found, then it executes the corresponding
transformation action which results in a change in the target model. These changes in the target model
happen concurrently among the EVM instances, therefore conflicting changes need to be resolved and the
target model needs to be synchronized to avoid inconsistencies.

Results obtained from the proposed approach will be published in future papers, including the refined
execution mechanism, transformation examples and performance measurements to evaluate the scalability
of the solution.

Concrete example

Listing 6 shows the rule specification of a User using the Xtend language19 in the VIATRA transformation
framework. As a precondition to the rule, the userInstance simple graph pattern is referred to, that
matches if a User is created in the source model. As an action, it initializes the Template with a
new VariableDeclaration called timestamp. As the Users cannot delete themselves from the
platform, there is no corresponding transformation action. In order to note which Template is created
from the User, a traceability link is created. This link will be used in Listing 7 to find the corresponding
Template in the target model.
1 val userRule = crea teRule ()
2 . name(” userTransformation ”)
3 . precondi t ion (user Ins tance)
4 . a c t i o n (ActivationStateEnum .CREATED) [
5 / / c r e a t e a Template and V a r i a b l e D e c l a r a t i o n
6 val template = c r e a t e (Template) ;
7 val v a r i a b l e = crea teChi ld (template , Template . Dec lara t ions , V a r i a b l e D e c l a r a t i o n) ;
8 v a r i a b l e . name = ”timestamp” ;
9

10 / / c r e a t e t r a c e a b i l i t y l i n k
11 val t r a c e = c r e a t e T r a c e (user , template) ;
12 t r a c e . t a r g e t . add (v a r i a b l e) ;
13] . bui ld () ;

Listing 6: User’s rule specification

Listing 7 depicts the rule specification of a Post. As a precondition to the rule, the postInstance
simple graph pattern is referred to, that matches if a Post is created or deleted in the source model. If
a Post is submitted to the platform, then a new Edge is created which connects the last Location

19http://www.xtend-lang.org

22

http://www.xtend-lang.org

of the Template with the newly created one. Besides, a FieldUpdate is also created which sets
the timestamp VariableDeclaration for the UNIX time epoch of the Post creation. Finally,
traceability links are instantiated between the Post and the newly created elements in the target model.
If a Post is deleted from the platform, then the connections between the Locations are corrected, due
to the to-be-removed Location. Finally, all the elements that were created from the Post are removed
from the target and the traceability models.
1 val postRule = crea teRule ()
2 . name(” postTransformation ”)
3 . precondi t ion (p os t Ins tanc e)
4 . a c t i o n (ActivationStateEnum .CREATED) [
5 / / c r e a t e a new Template and V a r i a b l e D e c l a r a t i o n in the t a r g e t model
6 val template = getTrgTrace (post . submit ter) as Template ;
7 val edge = crea teChi ld (template , Template . Edge , Edge) ;
8 val f ie ldUpdate = crea teChi ld (edge , Edge . Action , FieldUpdate) ;
9 f ie ldUpdate . name = ”timestamp” ;
10 f ie ldUpdate . value = toUnixEpoch (post . timestamp) ;
11 val newLocation = crea teChi ld (template , Template . Location , Locat ion) ;
12 edge . t a r g e t = newLocation ;
13 edge . source = f indLas tLocat ion (template) ;
14

15 / / c r e a t e t r a c e a b i l i t y l i n k
16 val t r a c e = c r e a t e T r a c e (post , edge) ;
17 t r a c e . t a r g e t . addAll (l o c a t i o n , f ie ldUpdate) ;
18] . a c t i o n (ActivationStateEnum .DELETED) [
19 / / f ind edge in t a r g e t model
20 val edge = getTrgTrace (post) as Edge ;
21 val l o c a t i o n = edge . t a r g e t ;
22 val nextEdge = findSourceEdgeOf (l o c a t i o n)
23 i f (nextEdge != n u l l) {
24 nextEdge . source = edge . source ;
25 }

26

27 / / remove edge and l o c a t i o n
28 val template = edge . parentTemplate ;
29 template . edge . remove (edge) ;
30 template . l o c a t i o n . remove (l o c a t i o n) ;
31

32 / / remove t r a c e a b i l i t y l i n k
33 val t r a c e = getTrace (post) ;
34 removeTrace (t r a c e) ;
35] . bui ld () ;

Listing 7: Post’s rule specification

To illustrate the task-parallel reactive approach proposed above, the aforementioned rule specifications
can be assigned to different EVM instances, each running on a separate thread. Separate instances are
going to be monitoring the userInstance and postInstance precondition patterns’ match set and
run the corresponding actions. Since the update transformation actions of the postRule depend on the
userRule, namely the Template of the User must exist in the target model, thus their executions
should be scheduled accordingly. Besides, the target model should be handled in transactions to guarantee
its consistency.

Challenges and open questions

To realize the proposed parallel reactive model transformations in VIATRA, there are several practical and
theoretical challenges that need to be overcome:

• Dependencies between the model transformation rules should be discovered to find the independent
ones [62], that can be applied in parallel;

• The concurrent editing of the target model from multiple EVM instances requires transactional model
processing and locking mechanisms ([63]) to guarantee its consistency;

• Alternatively, different lock-free mechanisms should be adopted for reactive transformations, e. g.,
Operational Transformation and Conflict-Free Replicated Data Types [64, 65] should be adopted for
reactive transformations;

• The allocation of rule specifications to the EVM instances is crucial to achieve equal load distribution
and avoid resource starvation between them;

• If the task-parallel execution does not provide satisfactory results, then the data-parallel approach
has to be studied for reactive transformations.

• Finally, declarative languages and advanced static analysis techniques should be exploited to derive
efficient imperative transformation code (e. g., Listing 6 and Listing 7).

23

Model
Query

Model
Transformation

Incremental [66] [29, 67]

Reactive - [7, 61]

Parallel [68, 36] [37, 38, 69, 70]

Table 4: Incremental, reactive, parallel query and transformation approaches

4.3 Related work

In order to address scalability in model query and transformation, several execution models have been
proposed and implemented. From the possible approaches, Table 4 enumerates the incremental, reactive
and parallel directions as they are the most related ones to the approach proposed in Section 4.2.

Model query

In order to achieve scalable model transformations for very large models, scalable model queries should be
employed. To this end, several approaches have been developed in the literature.

Bergmann et al. proposed incremental graph pattern matching on EMF models [66] by implementing
the RETE algorithm [10]. In the RETE algorithm, a network of nodes is constructed from the graph pattern.
In the network, each node caches the matches of the subpattern they are assigned to. The benefit of the
algorithm is the incrementality and the ability to react to changes in the source model. However, intensive
caching causes a large memory footprint, and updating the RETE network has computation complexity
also.

In order to improve the performance of the RETE network, Bergmann et al. proposed a parallel imple-
mentation of incremental pattern matching [68]. They split the RETE network into containers, where each
of them is responsible for matching a set of subpatterns. Each container runs on a separate thread and com-
municates via message queues. The advantage of this approach is, the update propagation of the network
is spread between the containers, thus the computation can complete faster, than in the single-threaded
implementation.

To improve the evaluation of OCL queries in EOL [71], Madani et al. provided parallel implementations
for first-order OCL operations in a data-parallel approach by creating a job for each model element and
submitting it to a thread pool executor [36]. Furthermore, they extended these operations with short-
circuiting thus further improving the processing time.

Model transformation

In target incremental transformations target models are updated according to changes in the source model [29,
67]. Incremental transformations are usually executed faster, than batch transformations, which recompute
the whole target model. Reactive model transformations are executed as reactions for events emitted by
event sources, and they can combine incrementality with lazy evaluation [7].

Model transformations are computation heavy operations. In order to make them more scalable,
different parallelization techniques have been proposed.

Tisi et al. implemented a task-parallel engine for ATL in which each thread executes a different transfor-
mation rule and works on the whole source and target models [37]. Due to several constraints of the ATL
language, the application of transformation rules is highly independent of each other, which is beneficial for
the parallel execution of transformations. However, due to technical restrictions of the Eclipse Modeling
Framework they used, target element creation, adding values to multi-valued collections, creating and
reading traceability links need to be synchronized.

Burgueno et al. introduced the LinTra framework for model-to-model (M2M) transformations [38, 69].
The framework adopts the principles of the Linda coordination language that follows the Blackboard
approach. In this approach, processes communicate via tuples in shared memory. LinTra cuts the source
model into partitions and transforms them in a data-parallel way in a master-slave architecture. The master
process coordinates the work of the slaves that execute the transformation rules on the model partitions [72].

Mezei et al. proposed a parallelization approach based on the offline dependency check of transforma-
tion rules [70]. Two transformation rules are in metaconflict if their match may conflict according to the
metamodel items used in the rules. Those rules that are not in metaconflict can be grouped into indepen-
dence blocks because they can be executed in parallel. Consecutive blocks may not be conflict-free, thus
they implemented several heuristics to avoid and resolve conflicts in VMTS [73].

24

5 Composition of Model Transformations

This section focuses on the data and service workflows while elaborates on the proposed steps of utilizing
the concept of model transformation compositions in defining the specified workflows within and across
LCDPs and other external services.

5.1 Models to be transformed

The area in an LCDP where the model transformations are applied are discussed in the paper [74].

y2

z3
m2

m1

x2

x1 y1

z1

LCDP1 LCDP2

App11

App12

App21

App22

y3

z2

1.a.i

1.a.ii

1.a.iii

1.a.iv

2.b.i

2.a.i

2.a.ii

2.a.iii

2.a.iv

Figure 11: Model Transformation Area in LCDP/external services

Model transformations and its compositions can be used in the following situation as described in
Figure 11. In this Figure, two LCDPs are considered as LCDP 1 and LCDP 2. In LCDP 1, there are two
applications shown as circles called App11 and App12. Inside these applications, there will be few artifacts
which is a page or a part of a page or a workflow of an application. Inside App11, there are two artifacts
shown as squares named as x1 and x2. Inside App12, there are also two artifacts shown in squares called
m1 and m2. Likewise, in LCDP 2, there are two applications shown as circles called App21 and App22.
Inside App21, there are three artifacts show in squares called as y1, y2 and y3. Similarly in App22, there are
also three artifacts shown in squares called as z1, z2 and z3. Different types of areas in a low-code platform
where the model transformation may takes place are as follows.

1. Inter LCDP: An application or artifact made in one LCDP is transformed into another LCDP or other
external services. Such LCDPs should be open source as it can be strategically used to handle lock-in,
interoperability and long-term maintainance of software [75]. It must take place as:

(a) Inter application: There are four sub-cases in which model transformation can take place across
applications through different low-code platforms. They are:

i. Artifact to artifact - An artifacts in one application within one LCDP can be transformed or
moved into an artifact in another application in different LCDP. The transformation arrow
is shown from y1 to x1.

ii. Artifact to app - An artifact in one application within one LCDP can be transformed or
moved into an application in different LCDP. The transformation arrow is shown from z1
to App12.

iii. App to app - An application within one LCDP can be transformed or moved into another
application of different LCDP. The transformation arrow is shown from App12 to App21.

iv. App to artifact - An application within one LCDP can be transformed or moved into an
artifact in another application in different LCDP. The transformation arrow is shown from
App12 to z2.

2. Intra LCDP: Model Transformation takes place within a low-code platform. They are of two types.
(a) Inter application: An application or a subset of an application is reused to build different

applications within the same LCDP. In this case also, there are four different sub-cases. They
are:

i. Artifact to artifact - An artifacts in one application can be transformed or moved into an
artifact in another application in the same LCDP. The transformation arrow is shown from
y2 to z3.

ii. Artifact to app - An artifact in one application can be transformed or moved into an appli-
cation in the same LCDP. The transformation arrow is shown from y3 to App22.

25

iii. App to app - An application can be transformed or moved into another application within
the same LCDP. The transformation arrow is shown from App11 to App12.

iv. App to artifact - An application can be transformed or moved into an artifact in another
application in the same LCDP. The transformation arrow is shown from App12 to x2.

(b) Intra application: A reusable artifact such as prebuilt forms, reports, etc., used in an application
is transformed from one view to another. These views are grid view, Kanban view, CSV, PDF,
etc. It is of only one type.

i. Artifact to artifact - An artifact can be transformed or moved to another artifact within the
same application in an LCDP.

5.2 Proposed steps to achieve workflows using model transformation composition

This subsection elaborates on the steps required to compose several model transformations in order to
support the specification of complex workflows in LCDPs as referenced in the paper [74]. Specifically,
we look at the possible interactions occurring intra and inter LCDPs as presented in Section 5.1 as proper
orchestrations of different services. If we can manage such services as model transformations, then we
can reuse the theories underpinning existing composition approaches for model transformations. In this
respect, Figure 12 depicts the main components of envisioned approach which is detailed in the following.

Figure 12: Proposed approach

Goal specification metamodel: A technique to chain model transformation is employed similar to the proposed
technique in [76]. In that case, the desired model conforms to the goal specified by the user that consists
of target metamodel. The approach is able to identify any possible transformation chains considering the
given goal and the input model. Likewise, we aim to provide the users of LCDPs with the means to specify
the properties of the targeted workflows at a higher level of abstraction. The tools and languages will
allow to specify constraints, functional, and non-functional requirements that the desired workflow should
satisfy. Example of goal is that the user wants to take some input model and visualize it by means of two
target views, i.e., grid view and Kanban view. It is necessary to define a customized modeling language
such as BPMN (Business Process Model and Notations) that provides users with all the modeling constructs
formalized in the metamodel in order to enable the adoption of the metamodel.
LCDP metamodels: We, further plan to define metamodels for specifying properties of the supported LCDPs.
The aim is to specify workflow models which can be executed by the corresponding LCDP. The specifi-
cation of such metamodels mandates the analysis of different LCDPs with the aim to identify the distinct
characteristics with regards to the provided mechanisms to specify and execute complex workflows [23].
The metamodels are classified as follows. The main application metamodel of the whole LCDP is mapped
to view-specific metamodels. They are design-time view and run-time view, that correspond to the static
analysis of the application model before the deployment, and to run-time analysis of the application model
after its deployment, respectively. Such views store only those data that are relevant to its specific view [77].
The citizen developers should only see these view models individually at the design time or the run-time
and not the whole of LCDP’s application model. These separation of views allow the citizen developer to
focus on either of the views without much worrying about the overall expressiveness and flexibility of the
application model of a particular LCDP.
LCDPs connectors: They are the software components that allow the system to connect to the different
LCDPs by relying on provided APIs.

26

Composition Reasoner: This component checks the feasibility of the input goal with respect to the available
services that are provided by the LCDPs which the proposed system is able to connect. The list of such
services is retrieved and kept updated by relying on the available LCDPs connectors. For instance, con-
sidering simple goal specification given previously, the composition reasoner would check if the available
LCDPs can manage services’ view types like grid and Kanban views.
Goal2Workflow transformation: By depending on the outcome of the Composition Reasoner and considering the
available LCDPs connectors, this component will generate possible workflows that are compatible with the
specified goals. Like model transformation compositions, multiple solutions are possible and the proposed
system will provide the user with a ranked list. By considering the previous example, the component would
show all the possible workflows that allow to generate grid and Kanban views out of a source model. In
case there are more than one services (even provided by different LCDPs) that are able to manage grid and
Kanban view, the component would produce all the possible compositions.
Workflow engine: It executes models generated by the Goal2Workflow transformation. The engine interacts
with different LCDPs that allows the execution of workflows via some exposed APIs.

To sum it up, Figure 12 specifies different goal specifications which will be recognized by the source model,
the intermediate model and the target model that need to be transformed. This goal specification metamodel
is used to implement modeling languages. Further, in order to develop an application landscape that also
includes static and run-time perspectives of the LCDP. This enables to specify goal-specific workflows.
The third point of the figure shows the composition reasoner which defines the need for composing different
model transformations to achieve a workflow or a part of workflow. The Goal2Workflow transformation
helps to achieve the targeted workflows that are intended to be implemented. These dependent workflows
need to be orchestrated across applications of different LCDPs using a workflow engine. Lastly, an LCDP
connector is built to interoperate different services offered by different platforms. Many services such as
APIs need to be published or consumed within or across LCDPs.
Therefore, this research approach helps to identify some of the prominent research challenges as to how
one service in an LCDP can be considered as a model transformation, and how a workflow of services
can be achieved by different model transformation compositions. This aims to achieve better reusable and
interoperable services in an LCDP.

5.3 Related work

This subsection elaborates the related works on composition of model transformation, usage of model
transformation in distributed environment and how composition of models are linked to distributed envi-
ronment.

Model transformation composition approaches

Basciani et al. (2018a, 2018b) [76, 78] took user input as source model and target metamodel. It can
be described as retrieving source metamodel and detecting all the available chain transformations. Then,
finding out the best chain transformation by calculating the optimal coverage of every chain transformation
and information loss in a customized Dijkstra algorithm for every chain transformation. The processes in
this method are (i) finding source model and target meta-model. (ii) Finding available transformation chain
lists. (iii) Select the optimal chain and execute it. Step (ii) and (iii) comprises of Model Transformation
Composition Language (MTCL).
Basciani et al. (2014) [79] took user input as source model and target metamodel. It can be described as
retrieving source metamodel and finding out all the possible chain transformations. It checks if the source
and target metamodels are incompatible, then an intermediate adapter is automatically generated to fill
the gap in between the inconsistencies between the metamodels. The processes in this method are (i)
find source model and target meta-model. (ii) Build MTCL by creating an intermediate adapter between
incompatible metamodels.
Etien et al. (2015) [80] took user input as very large models based on UML, Ecore, etc. It can be described
as decomposing the models based on the separation of concerns and then use localized transformation to
check the desired outcomes according to the objectives of the application. The processes in this method
are (i) Find out the granularities of the large model. (ii) Build localized transformation and combine those
transformations with the help of MTCL.
Aranega et al. (2012) [81] took user input as large models. It can be described as preparing feature models
by dividing the business logic of a group of elements of a model. These feature models are used to automate
the consistent set of model transformations and generate an executable chain of model transformation to
implement the desired objectives. The processes in this method are (i) Find out the granularities of the large
model. (ii) Build MTCL for a consistent set of model transformation chains.
Etien et al. (2012) [82] took user input as model transformation chains. It can be described as determin-
ing which chaining of the model transformation gives the desired result by determining pre-conditions,

27

post-conditions, and behavior of individual rules of different model transformations. Commutativity of
the chaining of model transformations is also used to detect identical results by using both sides of the
transformation. The process in this method is to find out the best possible model transformation chain.
Etien et al. (2010) [83] took user input as models. It can be described as combining independent model
transformation that jointly works to achieve the same objective that does not handle compatible source and
target metamodels. The process in this method is to build MTCL for independent model transformation
with incompatible metamodels.
Wagelaar et al. (2010, 2008) [84, 85] took user input as two model transformation language (ATL and QVT-
R). It can be described as proposing an internal composition technique called model superimposition that
allows for extending and overriding rules in different transformation modules that provides executable
semantics and proper implementation in one of the model transformation languages. The process in this
method is to build the internal composition of model transformation.
Chenouard et al. (2009) [86] took user input as model transformation chains. It can be described as
automatically discovering some more detailed information so that the actual complete chaining constraints
can be fulfilled by statically analyzing transformation. The process in this method is to find out the best
transformation chain by statically analyzing transformation that comprises MTCL.
Rivera et al. (2009) [87] took user input as models and model transformations. It can be described as
introducing a graphical executable language for orchestrating ATL transformation to modularize the trans-
formation composition based on some mechanism and execute the chaining of model transformation. The
process in this method is to find out proper mechanisms such as conditional, parallel, and looping of
transformation composition for identifying the appropriate output model known as Orchestration Engine.
Vanfooff et al. (2006) [88] took user input as metamodel. It can be described as proposing metamodels for
a transformation chain modeling language that enables the implementation-independent composition of
transformation in the concrete syntax based on the UML activity diagram. This composition of transfor-
mation chains can be applied to the models used to implement a concrete implementation of the desired
result. The process in this method is to create metamodels that support transformation chains modeling
language that comprise an MTCL.

State-of the-art in model transformation in a distributed environment

The work in a PhD thesis done by Amine Benelallam [89] focuses on handling the scalability issues
that exploit the wide availability of distributed clusters in the Cloud for the distributed execution of
model transformations and their decentralized model persistence. The thesis proposes an approach for
scalable model transformation and persistence by exploiting the high-level abstraction of relational model
transformation languages and the well-defined semantics of existing distributed programming models to
provide a relational model transformation engine with implicit distributed execution [46, 90]. This proposed
approach is extended with an efficient model distribution algorithm based on the analysis of relational
model transformation and results on balanced partitioning of streaming graphs [91]. This approach is
applied to ATL transformation language on top of MapReduce distributed programming model. Finally,
this approach also proposes a multi-persistence backend for manipulating and storing models in NoSQL
databases according to the modeling scenario.
The research paper written by Jurack et al. [92] consider an approach to composite models for largely
independent teams and their transformation based on graph transformation concepts. In this paper, Eclipse
Modeling Framework (EMF) sets up a setting of composite models that can be distributed over several
sites. Further, the paper shows composite models with explicit and implicit interfaces using concepts of
distributed graph tranformation and outlines different kinds of composite model transformation.
The paper done by Mallet et al. [93] proposes a model-driven framework (to explicitly specify distributed
architectural styles such as client-server, publish-subscribe, and peer-to-peer) as independent models of the
application functionalities. Based on the process calculus, a formal design process is shown that enables
architectural solutions to be generated by an endogeneous transformation model. Based on an expandable
repository of architectural styles, a functional model of an application could be systematically composed
with alternative styles for further analysis before development of an application.
A journal paper written by Burgueno et al. [94] presents a solution that provides concurrency (parallel) and
distributed execution to model transformation. A novel coordination language called Linda is elaborately
discussed in the paper [95]. In paper [94], a novel Java-based execution platform is introduced to achieve
parallelization by parallel execution of the core features of the transformation. This parallel execution will be
an out-place (have a distinct source model, target model and a file for storing the status of the transformation
execution) transformation that can be used as a target for high-level transformation language compiler. This
Linda-based tool enables the concurrent execution of model transformations that can serve as a platform
for their scalable and efiicient implementation in parallel and distributed environment.
The research paper done by Rabbi et al. [96] introduces a new web-based metamodelling and model
transformation tool called WebDPF (Web Diagram Predicate Framework). WebDPF supports multilevel
diagrammatic development and analysis of model transformation that exploits auto-completion of partial

28

models which enhances modelling efficiency, and provides execution sematics for workflow model. This
WebDPF involves a scalable model navigation facility that helps users to inspect and query large models.

How distributed environment is linked with model composition

Composition of model transformations is expected to be executed by heterogeneous tools and techniques
across different platforms. These platforms can be remotely accessed distributively. Reusing and composing
smaller model transformations distributively is a challenging task in preserving the syntactic and semantic
characteristics across different platforms. The smaller model transformations need to be maintained in
a model repository by applying the techniques of distributed systems. The model transformation is
also a model that leads to clear system architecture, efficient implementation, high scalability and good
flexibility [97].
One of the distributed techniques of using model compositions are described in the paper [98]. In paper [98],
the problem of model compositions are addressed when data sources including models and data are
distributed across multiple sites and have different scopes. Decision making is used when these data and
model resources are leveraged to support the composition and execution of the sequence of models in
response to a particular decision making situation. Also, in this paper, a system architecture is presented
which facilitates automation during model composition and execution while enabling the distribution and
implementation of the data/model to be transparent to the user.
As a future goal, a parallel distributed cloud-based environment is envisioned to perform the model
transformation and its composition. For a system to be scalable, all the involved artifacts, such as model
transformations, need to be available in a distributed manner so that an user can efficiently access any
reusable artifacts according to their needs from remote locations.

29

6 Conclusion

In this deliverable, we introduced low-code delevopment platforms (LCDPs) as the next-generation devel-
opment environments. These environments employ the recent practical advancements of MDE, with the
benefit of using models at higher abstraction level to define complex software systems as fully operational
applications. We focused on the underpinning techniques, such as model queries and transformations, and
their requirements for scalability and quick response time to meet the users’ needs. In Section 2 we showed
these needs in a motivating case study from social media.

In Section 3, we made an overview of what, and how, execution strategies can be used for model driven
engineering. We mainly focused on distributed approaches that can be used to improve scalability of
programs. In the context of developing low-code platforms for managing models, these strategies might be
used for optimizing performances. However, a wrong use of a computational model can have a bad impact
on calculation efficiency. The motivating example presented in Section 2.1 and the implementations of
Section 3.2 illustrate that by using different strategies and different combinations of paradigms for a given
input model, different advantages could be observed, such as complexity, and parallelism level. These
differences are more illustrated with the experiments conducted in Section 3.2. Different paradigms may
be chosen, according to different properties: the type of input model, its size, its topology, the type of
computation to perform, and the available infrastructure.

Section 4 introduced reactive model transformations for LCDPs as a means to improve the response time
of these platforms. First, it elaborated on the state-of-the-art reactive model transformation engine (EVM)
in the VIATRA model transformation framework. After that we motivated the need for a scalable reactive
transformation engine in LCDPs by adopting the running example. Finally, we proposed a task-parallel
extension of EVM, by distributing the model transformation tasks between the EVM instances with a goal
to achieve higher throughput and lower response times on a platform with frequently occurring events.

Section 5 refered the four subparts that comprise of the specification of complex workflows within and
across applications to be applied within or across platforms or external services. The goal is to support
citizen developers by providing them modeling constructs that permit to specify the goal of the desired
workflows at a high-level of abstraction. By relying on the techniques and tools developed for composing
model transformations, the idea is to generate possible workflows that satisfy the initial goal. The second
subpart showed the proposed plan on applying model transformation composition in a distributed low-
code environment. The plan focuses on the modeling languages such as goal and workflow specification
languages. They have to be defined in an iterative manner by specifying real situations and refine the
available constructs in case of errors or to cover unforeseen requirements. The third subpart elicits on a
related survey on internal and external compositions of model transformations while the fourth subpart
briefly cites some of the state-of-the-art works on model transformations in a distributed environment. It is
very important to consider the parallel and distributed execution of compositions of model transformations
so as to handle complex workflows over a large set of models in a huge applications within or across different
platform.

Future work

As future work for the multi-paradigm strategies, we will create an engine that provides multiple execution
strategies. The goal of creating a prototype of distributed queries is to drive a complete study of how
paradigms can be used and combined to classify them depending on use cases. Also, additional experiments
will be conducted with increasing input size on distributed architectures.

For reactive model transformations, we aim to realize the proposed parallel reactive model transfor-
mation engine for VIATRA, to achieve better response times and higher throughput on a platform with
frequently occurring events.

As future works for model transformation compositions in relation to LCDPs, we will focus on the
development of the workflow engine and all the dependent components including the reasoner, and the
goal to workflow transformation of the proposed plan. We aim to implement the workflow (transforma-
tion) engine to compose various models in a scalable cloud-based environment such as IoT systems, social
network platforms, etc. Further, we need to orchestrate the transformation chains that implements the in-
teroperability features of a platform and managing different paradigms of model transformation languages
applied in a distributed environment.

30

References
[1] Douglas C Schmidt. Model-driven engineering. Computer-IEEE

Computer Society-, 39(2):25, 2006.
[2] Mariano Belaunde, Cory Casanave, Desmond DSouza, Keith

Duddy, William El Kaim, Alan Kennedy, William Frank, David
Frankel, Randall Hauch, Stan Hendryx, et al. Mda guide version
1.0. 1, 2003.

[3] Frédéric Jouault and Ivan Kurtev. On the interoperability of model-
to-model transformation languages. Science of Computer Program-
ming, 68(3):114–137, 2007.

[4] Juan de Lara and Esther Guerra. From types to type requirements:
genericity for model-driven engineering. Software & Systems Mod-
eling, 12(3):453–474, 2013.

[5] Robert Waszkowski. Low-code platform for automating business
processes in manufacturing. IFAC-PapersOnLine, 52(10):376–381,
2019.

[6] Massimo Tisi, Jean-Marie Mottu, Dimitrios S. Kolovos, Juan
De Lara, Esther M Guerra, Davide Di Ruscio, Alfonso Pieranto-
nio, and Manuel Wimmer. Lowcomote: Training the Next Gener-
ation of Experts in Scalable Low-Code Engineering Platforms. In
STAF 2019 Co-Located Events Joint Proceedings: 1st Junior Researcher
Community Event, 2nd International Workshop on Model-Driven En-
gineering for Design-Runtime Interaction in Complex Systems, and 1st
Research Project Showcase Workshop co-located with Software Technolo-
gies: Applications and Foundations (STAF 2019), CEUR Workshop
Proceedings (CEUR-WS.org), Eindhoven, Netherlands, July 2019.

[7] Salvador Martı́nez Perez, Massimo Tisi, and Rémi Douence. Reac-
tive model transformation with ATL. Sci. Comput. Program., 136:1–
16, 2017.

[8] Dimitrios S. Kolovos, Louis M. Rose, Nicholas Drivalos Matragkas,
Richard F. Paige, Esther Guerra, Jesús Sánchez Cuadrado, Juan
de Lara, István Ráth, Dániel Varró, Massimo Tisi, and Jordi Cabot.
A research roadmap towards achieving scalability in model driven
engineering. In Proc. of the Workshop on Scalability in Model Driven
Engineering, page 2. ACM, 2013.

[9] Antonio Bucchiarone, Jordi Cabot, Richard F. Paige, and Alfonso
Pierantonio. Grand challenges in model-driven engineering: an
analysis of the state of the research. SoSyM, 19(1):5–13, 2020.

[10] Charles Forgy. Rete: A fast algorithm for the many pattern/many
object pattern match problem. Artificial Intelligences, 19(1):17–37,
1982.

[11] Jeffrey Dean and Sanjay Ghemawat. Mapreduce: Simplified data
processing on large clusters. In Proceedings of the 6th Conference
on Symposium on Operating Systems Design & Implementation - Vol-
ume 6, OSDI’04, pages 137–149, Berkeley, CA, USA, 2004. USENIX
Association.

[12] Christian Krause, Matthias Tichy, and Holger Giese. Implementing
graph transformations in the bulk synchronous parallel model. In
Stefania Gnesi and Arend Rensink, editors, Fundamental Approaches
to Software Engineering, pages 325–339, Berlin, Heidelberg, 2014.
Springer Berlin Heidelberg.

[13] Raquel Sanchis, Óscar Garcı́a-Perales, Francisco Fraile, and Raul
Poler. Low-code as enabler of digital transformation in manufac-
turing industry. Applied Sciences, 10(1):12, 2020.

[14] Avery Ching, Sergey Edunov, Maja Kabiljo, Dionysios Logothetis,
and Sambavi Muthukrishnan. One trillion edges: Graph process-
ing at facebook-scale. Proc. VLDB Endow., 8(12):1804–1815, Aug
2015.

[15] Derrick Harris. Facebook’s trillion-edge, hadoop-based and open
source graph-processing. Aug 2013.

[16] Bimal Viswanath, Alan Mislove, Meeyoung Cha, and Krishna P.
Gummadi. On the evolution of user interaction in facebook. In
Proceedings of the 2nd ACM Workshop on Online Social Networks,
WOSN ’09, page 37–42, New York, NY, USA, 2009. Association for
Computing Machinery.

[17] Antonio Garcı́a-Domı́nguez, Georg Hinkel, and Filip Krikava, ed-
itors. Proceedings of the 11th Transformation Tool Contest, co-located
with the 2018 Software Technologies: Applications and Foundations,
TTC@STAF 2018, Toulouse, France, June 29, 2018, volume 2310 of
CEUR Workshop Proceedings. CEUR-WS.org, 2019.

[18] Dimitris S. Kolovos, Richard F. Paige, and Fiona A. C. Polack.
On the evolution of OCL for capturing structural constraints in
modelling languages. In Jean-Raymond Abrial and Glässer Uwe,
editors, Rigorous Methods for Software Construction and Analysis, Es-
says Dedicated to Egon Börger on the Occasion of His 60th Birthday,
volume 5115 of Lecture Notes in Computer Science, pages 204–218.
Springer, 2009.

[19] Frédéric Jouault, Freddy Allilaire, Jean Bézivin, and Ivan Kurtev.
ATL: A model transformation tool. Sci. Comput. Program., 72(1-
2):31–39, 2008. Special Issue on Second issue of experimental soft-
ware and toolkits (EST).

[20] Benedek Horváth, Bence Graics, Ákos Hajdu, Zoltán Micskei,
Vince Molnár, István Ráth, Luigi Andolfato, Ivan Gomes, and
Robert Karban. Model Checking as a Service: towards prag-
matic hidden formal methods. In Esther Guerra and Ludovico
Iovino, editors, MODELS ’20: ACM/IEEE 23rd International Con-
ference on Model Driven Engineering Languages and Systems, Virtual
Event, Canada, 18-23 October, 2020, Companion Proceedings, pages
37:1–37:5. ACM, 2020.

[21] Stefano Schivo, Bugra M. Yildiz, Enno Ruijters, Christopher Gerk-
ing, Rajesh Kumar, Stefan Dziwok, Arend Rensink, and Mariëlle

Stoelinga. How to efficiently build a front-end tool for UPPAAL: A
model-driven approach. In Proc of the 3rd International Symposium
on Dependable Software Engineering, volume 10606 of LNCS, pages
319–336. Springer, 2017.

[22] Edmund M Clarke, Thomas A Henzinger, Helmut Veith, and Rod-
erick P Bloem. Handbook of model checking. Springer, 2018.

[23] Apurvanand Sahay, Arsene Indamutsa, Davide Di Ruscio, and Al-
fonso Pierantonio. Supporting the understanding and comparison
of low-code development platforms. In 2020 46th Euromicro Con-
ference on Software Engineering and Advanced Applications (SEAA),
pages 171–178. IEEE, 2020.

[24] Javier Troya, José M Bautista, and Antonio Vallecillo. A rewriting
logic semantics for atl (extended version).

[25] Nafiseh Kahani, Mojtaba Bagherzadeh, James R Cordy, Juergen
Dingel, and Daniel Varró. Survey and classification of model
transformation tools. Software & Systems Modeling, 18(4):2361–2397,
2019.

[26] Edward D Willink. A text model-use your favourite m2m for m2t.
In MODELS Workshops, pages 89–102, 2018.

[27] Jolan Philippe, Massimo Tisi, Hélène Coullon, and Gerson Sunyé.
Towards Transparent Combination of Model Management Ex-
ecution Strategies for Low-Code Development Platforms. In
ACM/IEEE 23rd International Conference on Model Driven Engineer-
ing Languages and Systems, (Virtual Conference), Canada, October
2020.

[28] D. Harel and A. Pnueli. On the Development of Reactive Systems,
pages 477–498. Springer-Verlag, Berlin, Heidelberg, 1989.

[29] Théo Le Calvar, Frédéric Jouault, Fabien Chhel, and Mickael Cal-
reul. Efficient ATL incremental transformations. Journal of Object
Technology, 18(3):2:1–17, Jul 2019. The 12th International Confer-
ence on Model Transformations.

[30] Jordi Cabot and Ernest Teniente. Incremental integrity checking
of UML/OCL conceptual schemas. Journal of Systems and Software,
82(9):1459–1478, 2009.

[31] Varró, Gergely and Frederik Deckwerth. A rete network construc-
tion algorithm for incremental pattern matching. In Keith Duddy
and Gerti Kappel, editors, Theory and Practice of Model Transforma-
tions - 6th International Conference, ICMT 2013, Budapest, Hungary,
June 18-19, 2013. Proceedings, volume 7909 of Lecture Notes in Com-
puter Science, pages 125–140. Springer, 2013.

[32] Gábor Bergmann, András Ökrös, István Ráth, Dániel Varró, and
Gergely Varró. Incremental pattern matching in the viatra model
transformation system. In Proceedings of the Third International
Workshop on Graph and Model Transformations, GRaMoT ’08, pages
25–32, New York, NY, USA, 2008. Association for Computing Ma-
chinery.

[33] Massimo Tisi, Salvador Martı́nez Perez, Frédéric Jouault, and Jordi
Cabot. Lazy execution of model-to-model transformations. In Jon
Whittle, Tony Clark, and Thomas Kühne, editors, Model Driven
Engineering Languages and Systems, 14th International Conference,
MODELS 2011, Wellington, New Zealand, October 16-21, 2011. Pro-
ceedings, volume 6981 of Lecture Notes in Computer Science, pages
32–46, Berlin, Heidelberg, 2011. Springer.

[34] Massimo Tisi, Rémi Douence, and Dennis Wagelaar. Lazy evalua-
tion for OCL. In Achim D. Brucker, Marina Egea, Gogolla Martin,
and Frédéric Tuong, editors, Proceedings of the 15th International
Workshop on OCL and Textual Modeling co-located with 18th Interna-
tional Conference on Model Driven Engineering Languages and Systems
(MoDELS 2015), Ottawa, Canada, September 28, 2015, volume 1512
of CEUR Workshop Proceedings, pages 46–61. CEUR-WS.org, 2015.

[35] Edward D. Willink. Deterministic lazy mutable OCL collections.
In Martina Seidl and Steffen Zschaler, editors, Software Technolo-
gies: Applications and Foundations - STAF 2017 Collocated Workshops,
Marburg, Germany, July 17-21, 2017, Revised Selected Papers, volume
10748 of Lecture Notes in Computer Science, pages 340–355. Springer,
2017.

[36] Sina Madani, Dimitris S. Kolovos, and Richard F. Paige. Towards
optimisation of model queries: A parallel execution approach. Jour-
nal of Object Technology, 18(2):3:1–21, July 2019. The 15th European
Conference on Modelling Foundations and Applications.

[37] Massimo Tisi, Martı́nez Salvador Perez, and Hassene Choura. Par-
allel execution of ATL transformation rules. In Ana Moreira, Bern-
hard Schätz, Jeff Gray, Antonio Vallecillo, and Peter J. Clarke, ed-
itors, Model-Driven Engineering Languages and Systems - 16th In-
ternational Conference, MODELS 2013, Miami, FL, USA, September
29 - October 4, 2013. Proceedings, volume 8107 of Lecture Notes in
Computer Science, pages 656–672. Springer, 2013.

[38] Loli Burgueño, Javier Troya, Manuel Wimmer, and Antonio Valle-
cillo. Parallel in-place model transformations with LinTra. In Dim-
itris S. Kolovos, Davide Di Ruscio, Nicholas Drivalos Matragkas,
Juan de Lara, István Ráth, and Massimo Tisi, editors, Proceedings
of the 3rd Workshop on Scalable Model Driven Engineering part of the
Software Technologies: Applications and Foundations (STAF 2015) fed-
eration of conferences, L’Aquila, Italy, July 23, 2015., volume 1406 of
CEUR Workshop Proceedings, pages 52–62. CEUR-WS.org, 2015.

[39] Murray Cole. Algorithmic skeletons : a structured approach to the
management of parallel computation. PhD thesis, University of Edin-
burgh, UK, 1988.

[40] Jolan Philippe and Frédéric Loulergue. PySke: Algorithmic Skele-
tons for Python. In The 2019 International Conference on High Perfor-
mance Computing & Simulation (HPCS), Dublin, Ireland, July 2019.

[41] Hélène Coullon and Sébastien Limet. The sipsim implicit paral-

31

lelism model and the skelgis library. Concurrency and Computation:
Practice and Experience, 28(7):2120–2144, 2016.

[42] Grzegorz Malewicz, Matthew H. Austern, Aart J.C Bik, James C.
Dehnert, Ilan Horn, Naty Leiser, and Grzegorz Czajkowski. Pregel:
A system for large-scale graph processing. In Proceedings of the 2010
ACM SIGMOD International Conference on Management of Data, SIG-
MOD ’10, pages 135–146, New York, NY, USA, 2010. ACM.

[43] G. M. Amdahl. Validity of the single processor approach to achiev-
ing large scale computing capabilities. IEEE Solid-State Circuits
Society Newsletter, 12(3):19–20, Summer 2007.

[44] Hélène Coullon, Julien Bigot, and Christian Pérez. Extensibility
and Composability of a Multi-Stencil Domain Specific Framework.
International Journal of Parallel Programming, November 2017.

[45] Amine Benelallam, Abel Gómez, and Massimo Massimo Tisi.
ATL-MR: model transformation on MapReduce. In Ali Jannesari,
Skiegfried Benkner, Xinghui Zhao, Ehsan Atoofian, and Yukionri
Sato, editors, Proceedings of the 2nd International Workshop on Soft-
ware Engineering for Parallel Systems, SEPS SPLASH 2015, Pittsburgh,
PA, USA, October 27, 2015, pages 45–49. ACM, 2015.

[46] Amine Benelallam, Abel Gómez, Massimo Tisi, and Jordi Cabot.
Distributing relational model transformation on MapReduce. Jour-
nal of Systems and Software, 142:1–20, 2018.

[47] Stefan Jurack and Gabriele Taentzer. A component concept for
typed graphs with inheritance and containment structures. In
Hartmut Ehrig, Arend Rensink, Grzegorz Rozenberg, and Andy
Schürr, editors, Graph Transformations - 5th International Conference,
ICGT 2010, Enschede, The Netherlands, September 27 - - October 2,
2010. Proceedings, volume 6372 of Lecture Notes in Computer Science,
pages 187–202. Springer, 2010.

[48] Gábor Imre and Gergely Mezei. Parallel graph transformations on
multicore systems. In Victor Pankratius and Michael Philippsen,
editors, Multicore Software Engineering, Performance, and Tools, pages
86–89, Berlin, Heidelberg, 2012. Springer Berlin Heidelberg.

[49] Gergely Mezei, Tihamer Levendovszky, Tamás Mészáros, and
István Madari. Towards truly parallel model transformations :
A distributed pattern matching approach. pages 403–410, 05 2009.

[50] Le-Duc Tung and Zhenjiang Hu. Towards systematic paralleliza-
tion of graph transformations over pregel. Int. J. Parallel Program.,
45(2):320–339, April 2017.

[51] Gábor Szárnyas, Benedek Izsó, István Ráth, Dénes Harmath, Gábor
Bergmann, and Dániel Varró. Incquery-d: A distributed incre-
mental model query framework in the cloud. In Proc. of the 17th
International Conference on Model-Driven Engineering Languages and
Systems, volume 8767 of LNCS, pages 653–669. Springer, 2014.

[52] Margaret Rouse. Task, definition. https://whatis.techtarget.com/
definition/task. Accessed: 2020-07-14.

[53] Tamás Vajk, Zoltán Dávid, Márk Asztalos, Gergely Mezei, and
Tihamér Levendovszky. Runtime model validation with parallel
object constraint language. In Proceedings of the 8th International
Workshop on Model-Driven Engineering, Verification and Validation,
MoDeVVa, New York, NY, USA, 2011. Association for Computing
Machinery.

[54] Nicholas Carriero and David Gelernter. Linda in context. Commun.
ACM, 32(4):444–458, 1989.

[55] Frank Buschmann, Regine Meunier, Hans Rohnert, Peter Som-
merlad, and Michael Stal. Pattern-Oriented Software Architecture -
Volume 1: A System of Patterns. Wiley Publishing, 1996.

[56] Loli Burgueño, Manuel Wimmer, and Antonio Vallecillo. A Linda-
based platform for the parallel execution of out-place model trans-
formations. Information & Software Technology, 79(C):17–35, Nov
2016.

[57] Loli Burgueño, Manuel Wimmer, and Antonio Vallecillo. Towards
distributed model transformations with LinTra. Jornadas de Inge-
nierı́a del Software y Bases de Datos, pages 1–6, 2016.

[58] Joseph E. Gonzalez, Reynold S. Xin, Ankur Dave, Daniel
Crankshaw, Michael J. Franklin, and Ion Stoica. Graphx: Graph
processing in a distributed dataflow framework. In Jason Flinn and
Hank Levy, editors, 11th USENIX Symposium on Operating Systems
Design and Implementation, OSDI ’14, Broomfield, CO, USA, October
6-8, 2014, pages 599–613. USENIX Association, 2014.

[59] Engineer Bainomugisha, Andoni Lombide Carreton, Tom Van Cut-
sem, Stijn Mostinckx, and Wolfgang De Meuter. A survey on re-
active programming. ACM Computing Surveys, 45(4):52:1–52:34,
2013.

[60] Benedek Horváth, Ákos Horváth, and Manuel Wimmer. Towards
the next generation of reactive model transformations on low-code
platforms: three research lines. In Esther Guerra and Ludovico
Iovino, editors, MODELS ’20: ACM/IEEE 23rd International Con-
ference on Model Driven Engineering Languages and Systems, Virtual
Event, Canada, 18-23 October, 2020, Companion Proceedings, pages
65:1–65:10. ACM, 2020.

[61] Gábor Bergmann, István Dávid, Ábel Hegedüs, Ákos Horváth,
István Ráth, Zoltán Ujhelyi, and Dániel Varró. Viatra 3: A reactive
model transformation platform. In Dimitris S. Kolovos and Manuel
Wimmer, editors, Theory and Practice of Model Transformations, pages
101–110, Cham, 2015. Springer International Publishing.

[62] Hartmut Ehrig. Introduction to the algebraic theory of graph gram-
mars (A survey). In Graph-Grammars and Their Application to Com-
puter Science and Biology, volume 73 of LNCS, pages 1–69. Springer,
1978.

[63] Csaba Debreceni, Gábor Bergmann, István Ráth, and Dániel Varró.
Property-based locking in collaborative modeling. In MODELS,

pages 199–209. IEEE Computer Society, 2017.
[64] Marc Shapiro, Nuno M. Preguiça, Carlos Baquero, and Marek Za-

wirski. Conflict-free replicated data types. In Proc of the 13th Inter-
national Symposium on Stabilization, Safety, and Security of Distributed
Systems, volume 6976 of LNCS, pages 386–400. Springer, 2011.

[65] David Sun, Chengzheng Sun, Agustina Ng, and Weiwei Cai.
Real differences between OT and CRDT in correctness and com-
plexity for consistency maintenance in co-editors. PACMHCI,
4(GROUP):021:1–021:30, 2020.

[66] Gábor Bergmann, Ákos Horváth, István Ráth, Dániel Varró,
András Balogh, Zoltán Balogh, and András Ökrös. Incremental
evaluation of model queries over EMF models. In MODELS, vol-
ume 6394, pages 76–90. Springer, 2010.

[67] Dániel Varró, Gábor Bergmann, Ábel Hegedüs, Ákos Horváth,
István Ráth, and Zoltán Ujhelyi. Road to a reactive and incremen-
tal model transformation platform: Three generations of the viatra
framework. Softw. Syst. Model., 15(3):609–629, July 2016.

[68] Gábor Bergmann, István Ráth, and Dániel Varró. Parallelization
of graph transformation based on incremental pattern matching.
Electronic Communications of the EASST, 18, 2009.

[69] Loli Burgueño, Manuel Wimmer, and Antonio Vallecillo. A linda-
based platform for the parallel execution of out-place model trans-
formations. Information and Software Technology, 79:17–35, 2016.

[70] Gergely Mezei, Tihamer Levendovszky, Tamas Meszaros, and Ist-
van Madari. Towards truly parallel model transformations: A
distributed pattern matching approach. In IEEE EUROCON 2009,
pages 403–410. IEEE, 2009.

[71] Dimitris S. Kolovos, Richard F. Paige, and Fiona A. C. Polack. The
epsilon object language (eol). In Proceedings of the Second Euro-
pean Conference on Model Driven Architecture: Foundations and Ap-
plications, ECMDA-FA’06, pages 128–142, Berlin, Heidelberg, 2006.
Springer-Verlag.

[72] Loli Burgueño, Eugene Syriani, Manuel Wimmer, Jeffrey G. Gray,
and Antonio Vallecillo. Lintrap: Primitive operators for the ex-
ecution of model transformations with lintra. In Proc. of the 2nd
Workshop on Scalability in Model Driven Engineering, volume 1206 of
CEUR-WS Proceedings, pages 23–30. CEUR-WS.org, 2014.

[73] Tihamer Levendovszky, László Lengyel, Gergely Mezei, and Has-
san Charaf. A systematic approach to metamodeling environments
and model transformation systems in VMTS. Electronic Notes in
Theoretical Computer Science, 127(1):65–75, 2005.

[74] Apurvanand Sahay, Davide Di Ruscio, and Alfonso Pierantonio.
Understanding the role of model transformation compositions
in low-code development platforms. In Proceedings of the 23rd
ACM/IEEE International Conference on Model Driven Engineering Lan-
guages and Systems: Companion Proceedings, pages 63:1–63:5. ACM,
2020.

[75] Björn Lundell, Jonas Gamalielsson, Stefan Tengblad,
Bahram Hooshyar Yousefi, Thomas Fischer, Gert Johansson,
Bengt Rodung, Anders Mattsson, Johan Oppmark, Tomas Gus-
tavsson, et al. Addressing lock-in, interoperability, and long-term
maintenance challenges through open source: How can companies
strategically use open source? In IFIP International Conference on
Open Source Systems, pages 80–88. Springer, Cham, 2017.

[76] Francesco Basciani, Mattia D’Emidio, Davide Di Ruscio, Daniele
Frigioni, Ludovico Iovino, and Alfonso Pierantonio. Automated
selection of optimal model transformation chains via shortest-path
algorithms. IEEE Transactions on Software Engineering, 2018.

[77] Nick Jansen. Exploring interactive application landscape visual-
izations based on low-code automation. Master’s thesis, 2019.

[78] Francesco Basciani, Davide Di Ruscio, Mattia D’Emidio, Daniele
Frigioni, Alfonso Pierantonio, and Ludovico Iovino. A tool for
automatically selecting optimal model transformation chains. In
Proceedings of the 21st ACM/IEEE International Conference on Model
Driven Engineering Languages and Systems: Companion Proceedings,
pages 2–6, 2018.

[79] Francesco Basciani, Davide Di Ruscio, Ludovico Iovino, and Al-
fonso Pierantonio. Automated chaining of model transformations
with incompatible metamodels. In International Conference on Model
Driven Engineering Languages and Systems, pages 602–618. Springer,
2014.

[80] Anne Etien, Alexis Muller, Thomas Legrand, and Richard F Paige.
Localized model transformations for building large-scale transfor-
mations. Software & Systems Modeling, 14(3):1189–1213, 2015.

[81] Vincent Aranega, Anne Etien, and Sebastien Mosser. Using feature
model to build model transformation chains. In International Con-
ference on Model Driven Engineering Languages and Systems, pages
562–578. Springer, 2012.

[82] Anne Etien, Vincent Aranega, Xavier Blanc, and Richard F Paige.
Chaining model transformations. In Proceedings of the First Work-
shop on the Analysis of Model Transformations, pages 9–14, 2012.

[83] Anne Etien, Alexis Muller, Thomas Legrand, and Xavier Blanc.
Combining independent model transformations. In Proceedings of
the 2010 ACM Symposium on Applied Computing, pages 2237–2243,
2010.

[84] Dennis Wagelaar, Ragnhild Van Der Straeten, and Dirk Deridder.
Module superimposition: a composition technique for rule-based
model transformation languages. Software & Systems Modeling,
9(3):285–309, 2010.

[85] Dennis Wagelaar. Composition techniques for rule-based model
transformation languages. In International Conference on Theory and

32

https://whatis.techtarget.com/definition/task
https://whatis.techtarget.com/definition/task

Practice of Model Transformations, pages 152–167. Springer, 2008.
[86] Raphaël Chenouard and Frédéric Jouault. Automatically dis-

covering hidden transformation chaining constraints. In Interna-
tional Conference on Model Driven Engineering Languages and Systems,
pages 92–106. Springer, 2009.

[87] José E Rivera, Daniel Ruiz-Gonzalez, Fernando Lopez-Romero,
José Bautista, and Antonio Vallecillo. Orchestrating atl model
transformations. Proc. of MtATL, 9:34–46, 2009.

[88] Bert Vanhooff, Stefan Van Baelen, Aram Hovsepyan, Wouter
Joosen, and Yolande Berbers. Towards a transformation chain
modeling language. In International Workshop on Embedded Com-
puter Systems, pages 39–48. Springer, 2006.

[89] Amine Benelallam. Model transformation on distributed platforms: de-
centralized persistence and distributed processing. PhD thesis, Nantes,
Ecole des Mines, 2016.

[90] Amine Benelallam, Abel Gómez, Massimo Massimo Tisi, and Jordi
Cabot. Distributed model-to-model transformation with ATL on
MapReduce. In Richard R. Paige, Davide Di Ruscio, and Markus
Völter, editors, Proceedings of the 2015 ACM SIGPLAN International
Conference on Software Language Engineering, SLE 2015, Pittsburgh,
PA, USA, October 25-27, 2015, SLE 2015, pages 37–48. ACM, 2015.

[91] Amine Benelallam, Massimo Tisi, Jesús Sánchez Cuadrado, Juan
de Lara, and Jordi Cabot. Efficient model partitioning for dis-
tributed model transformations. In Tijs van der Storm, Emilie
Balland, and Dániel Varró, editors, Proceedings of the 2016 ACM

SIGPLAN International Conference on Software Language Engineering,
Amsterdam, The Netherlands, October 31 - November 1, 2016, SLE
2016, pages 226–238. ACM, 2016.

[92] Stefan Jurack and Gabriele Taentzer. Towards composite model
transformations using distributed graph transformation concepts.
In International Conference on Model Driven Engineering Languages
and Systems, pages 226–240. Springer, 2009.

[93] Julien Mallet and Siegfried Rouvrais. Style-based model transfor-
mation for early extrafunctional analysis of distributed systems.
In International Conference on the Quality of Software Architectures,
pages 55–70. Springer, 2008.

[94] Loli Burgueno, Manuel Wimmer, and Antonio Vallecillo. A linda-
based platform for the parallel execution of out-place model trans-
formations. Information and Software Technology, 79:17–35, 2016.

[95] Dolores Burgueño Caballero et al. On the quality properties of
model transformations: Performance and correctness. 2016.

[96] Fazle Rabbi, Yngve Lamo, Ingrid Chieh Yu, and Lars Michael
Kristensen. Webdpf: A web-based metamodelling and model
transformation environment. In 2016 4th International Conference
on Model-Driven Engineering and Software Development (MODEL-
SWARD), pages 87–98. IEEE, 2016.

[97] Jean Bézivin. On the unification power of models. Software &
Systems Modeling, 4(2):171–188, 2005.

[98] Kaushal Chari. Model composition in a distributed environment.
Decision Support Systems, 35(3):399–413, 2003.

33

	Introduction
	On the need of scalable operations
	On the need of reusable and interoperable workflows
	Contributions
	Outline

	Motivating Example
	Querying a social media model
	Transforming and checking a social network at runtime
	Composing model transformations

	Cloud-based Scalable Model Management Operations
	Single-strategy model management
	Multi-strategy model management

	Live Model Transformations in Reactive Applications
	Reactive transformations in VIATRA
	Parallel reactive model transformations in VIATRA
	Related work

	Composition of Model Transformations
	Models to be transformed
	Proposed steps to achieve workflows using model transformation composition
	Related work

	Conclusion

