
Multi-provider capabilities in EnOSlib: driving
distributed system experiments on the

edge-to-cloud continuum

Baptiste Jonglez1[0000−0001−5434−6048], Matthieu Simonin2[0000−0002−9063−0334],
Jolan Philippe2[0000−0001−8759−4566], and Sidi Mohammed

Kaddour1[0000−0002−2745−4024]

1 Nantes Université, Ecole Centrale Nantes, IMT Atlantique, CNRS, Inria, LS2N,
UMR 6004, F-44000 Nantes, France

2 University of Rennes, Inria, CNRS, IRISA, UMR 6074 - Rennes, France
{baptiste.jonglez,matthieu.simonin,jolan.philippe,sidi-mohammed.kaddour}@inria.fr

Abstract. This paper introduces recent advances in EnOSlib, a Python
library that aims at facilitating the design and execution of reproducible
experiments across distributed computing infrastructures. Originally de-
veloped to simplify experimentation on testbeds such as Grid’5000 and
Chameleon Cloud, EnOSlib now incorporates support multi-provider de-
ployments, including access to edge resources, as well as advanced ser-
vices.
Key contributions include integration with Kwollect for fine-grained en-
ergy measurements, a planning service for executing timed events, and
enhanced network emulation functionalities. These features enable users
to model and study complex, realistic scenarios such as latency-sensitive
edge-to-cloud applications.
A major new capability is the support for synchronized multi-infrastructure
experiments, allowing simultaneous resource reservation and deployment
across diverse testbeds. The paper illustrates these capabilities through a
distributed video processing use case spanning edge and cloud platforms.
This paper is the companion paper of the tutorial presented in DAIS
2025.

Keywords: Experiment-driven research · Performance evaluation · Mul-
tiple infrastructure · Distributed computing experimentation library.

1 Introduction

This paper is the companion paper of a tutorial presented in DAIS 2025. The
tutorial showcases the EnOSlib [8] library: a largely adopted Python library3

to ease distributed experimentation on different testbeds [7,9,12,16,18,17,20,21],
and which is now also adopted by other frameworks [22,23]. We highlight how ex-
periments for an edge-to-cloud use case can be expressed and run with EnOSlib.
3 https://discovery.gitlabpages.inria.fr/enoslib/theyuseit.html

https://discovery.gitlabpages.inria.fr/enoslib/theyuseit.html

2 B. Jonglez, M. Simonin, et al.

EnOSlib targets established research testbeds such as Grid’5000 [6], FIT IoT-
LAB [3] and Chameleon Cloud [15], and is also planning to interface with new
testbeds like SLICES [2] or FABRIC [5]. The experimenter can leverage EnOSlib
to obtain resources on these testbeds, such as bare-metal servers, virtual ma-
chines, IoT devices, isolated networks. . . It is then possible to develop and au-
tomate complete distributed experiments using these resources. As illustrated
in Figure 1, the key steps EnOSlib aims at dealing with are: (i) provisioning
resources on which to run experiments, (ii) the management of these resources
(e.g. configuration management, software setup), (iii) benchmarking and ob-
taining metrics from the experiments, and (iv) cleaning and/or destroying used
resources.

Acquire
resources

Infrastructure
management Benchmark

Collect
metrics
Clean/
Destroy

Fig. 1: General experimental workflow with EnOSlib.

Beyond the initial deployment of an application, EnOSlib facilitates the study
of distributed systems by providing out-of-the box observability tools (e.g. off-
the-shelves monitoring stacks) and variability injection functionalities (e.g. using
state-of-art network emulation features). In the following we remind the core
abstractions behind EnOSlib: Provider and Service, as well as an important
design choice: idempotency.

Provider. At the EnOSlib’s core lies the Provider abstraction. Providers con-
nect to the various infrastructure to claim resources from. EnOSlib supports
two types of resources: compute servers and networks (IPv4 or IPv6). In other
words, a provider can be seen as a function that transforms an abstract resource
description into a concrete set of Hosts and Networks with the side effect of
actually claiming the corresponding resource on the platforms. An example of
user script is given in Fig. 2. The Host and Network object are generic in the
sense that a user can interact the same way with those objects regardless of
their provenance. This allows decoupling between hardware resources specifica-
tion (different for each platform and each situation to evaluate) and the actual
actions to perform during the experiments (common and generic). In practice,
that means that an experimentation can be transferred to another testbed at the
cost of changing only the provider used, assuming that the experiment doesn’t
rely on testbed-specific services.

EnOSlib is shipped with providers for Grid’5000 (bare-metal and virtual ma-
chines), Chameleon (bare-metal, cloud and edge containers), IoT-LAB (embed-
ded IoT devices), Vagrant (virtual machines on the local machine). The provider
abstraction has been extended to optionally let the users get resources on differ-
ent testbeds at the same time: this new feature is presented in Section 2.3.

Multi-provider capabilities in EnOSlib 3

1 provider_conf = {
2 "job_name": "myjobname",
3 "resources": {
4 "machines": [{
5 "roles": ["server"],
6 "cluster": "paradoxe",
7 "nodes": 1,
8 }, {
9 "roles": ["client"],

10 "cluster": "paradoxe",
11 "nodes": 3,
12 }
13],
14 }
15 }
16 provider = (
17 en.G5k.from_dictionary(conf)
18)
19 roles, nets = provider.init()

1 provider_conf = {
2 "lease_name": "mylease",
3 "resources": {
4 "machines": [{
5 "roles": ["server"],
6 "flavour": "compute_skylake",
7 "number": 1,
8 }, {
9 "roles": ["client"],

10 "flavour": "compute_skylake",
11 "number": 3,
12 }
13],
14 }
15 }
16 conf = (
17 en.CBMConf
18 .from_dictionary(provider_conf)
19)
20 provider = en.CBM(conf)
21 roles, nets = provider.init()

Fig. 2: Resources specification and grouping resources into generic roles on
Grid’5000 (left) and Chameleon (right). The roles returned by the provider
can be queried to get a group of hosts. For instance roles["client"] returns
a set of 3 Hosts corresponding to 3 (concrete) servers labelled as client by the
user.

Services. A Service is a high-level construction that relies on the resource
abstraction to provide reusable “units of behavior”. It is instantiated through
a Python function call that enforces its configuration as a side effect. Concretely,
a Service bootstraps classical software stacks on the resources and hides the low-
level details of their deployment to the experimenter (although experimenters
have to feed the service with specific inputs described in its interface). EnOSlib
offers a growing set of Services based on user needs. It includes several Observ-
ability Services that can deploy various monitoring/tracing stacks depending
on the user needs. Network emulation Services can be used to get control over
bandwidth and latency of network interface. Software stacks Services are able
to deploy complex software stack (e.g. Kubernetes). A recently added Service
is described in Section 2.2.

Idempotency. Idempotency refers to the property of an operation: applying it
multiple times must give the same output as applying it a single time. This prop-
erty has been popularized by Ansible in the context of configuration management
systems. Idempotency is a key property to support repeatability and robustness
in experimental workflows. It also facilitates iterative experiment development
using Jupyter Notebooks, since a given block of code can be re-executed as many

4 B. Jonglez, M. Simonin, et al.

times as necessary. EnOSlib ensures a first level of idempotency internally, and
also relies on Ansible modules to help the experimenter write idempotent code.
An example of user script to perform actions is given in Fig. 3.

On the server: generate a configuration file
with play_on(pattern_hosts="server") as p:

p.shell("echo 'parameter=value' > /tmp/my_config.conf")

Copy the config file to all clients
server_host = roles["server"][0].address # get the server IP
with play_on(pattern_hosts="client") as p:

Fetch the config file from the server
p.copy(

src=f"{server_host}:/tmp/my_config.conf",
dest="/tmp/my_config.conf",
remote_src=True

)

On each client: run a command using the config file
with play_on(pattern_hosts="client") as p:

p.command("./my_program --config /tmp/my_config.conf")

Fig. 3: Actions on resource described in Fig. 2 using the generic roles. Since roles
are defined for both resources on Grid’5000 and Chameleon Cloud, triggering
actions on distant machines is expressed in the same way. In this example, the
server generates a configuration file before copying it on each client. Then, the
clients use the copied file as input for a local program. Behind the scenes, the
play_on invocation generates an Ansible playbook, giving access to all standard
Ansible modules (shell, copy. . .), encouraging experimenters to write idempo-
tent code.

The paper is organized as follows. First, Section 2 introduces the new features
added in EnOSlib since the reference publication [8]. In Section 3, the use case for
the tutorial is presented, and the methodology to experiment on it is presented
in Section 4. Section 5 and Section 6 respectively present how to deploy the
experiment on a multi-site and on a multi-provider context. Concluding remarks
are given in Section 7.

2 New EnOSlib features

Building upon the concepts introduced in earlier work on EnOSlib [8], this sec-
tion presents recent advancements that expand the library features. Notable ad-
ditions include (i) a support for metrics collection with Kwollect [10] (Sect. 2.1);
(ii) a planning service for mocking events allowing their reproducibility (Sect. 2.2),

Multi-provider capabilities in EnOSlib 5

and (iii) multi-provider functionalities enabling seamless experiments across het-
erogeneous testbeds (Sect. 2.3). Beyond the core library, EnOSlib can also take
advantage of Jupyter notebooks to interactively design, execute, and visualize
results, including infrastructure introspection and live data previews (Sect. 2.4).

2.1 Metrics collection with the Kwollect Service

Energy efficiency is becoming more and more critical when evaluating algorithms
and distributed systems. While software-based energy measurement tools such as
PowerAPI [11], Kepler [4], Scaphandre [1], or PowerJoular [19] have been growing
in popularity, they rely on specific vendor functionalities (e.g. Intel RAPL) or
estimation models (e.g. regression models based on CPU usage). As a result,
they have limited precision and frequency, and they cannot measure the energy
impact of some components such as the physical disks or the Power Supplies
Units (PSU).

Fine-grained energy measurements at the physical level allow to fully eval-
uate and compare the energy efficiency of different algorithms on a given piece
of hardware; alternatively, the energy consumption of a single algorithm can be
measured on different hardware (for example with and without GPU). Most in-
terestingly, high-frequency energy measurements open interesting use-cases such
as measuring the energy impact of memory transfers or disk I/O operations.

EnOSlib supports experiments requiring accurate and fine-grained energy
measurement through integration with Kwollect [10], a monitoring solution avail-
able on the Grid’5000 platform [6]. Kwollect continuously polls physical wattmetres
at high frequency and exposes collected data through an API. It also collects
power consumption metrics from other physical sources such as Power Distri-
bution Units (PDUs), or the network traffic from network equipment. Beyond
Kwollect, other energy monitoring systems could be integrated in EnOSlib as
long as they provide an API that EnOSlib can query.

In practice, the experimenter specifies which sections of the experiment should
be monitored for energy consumption, and then EnOSlib retrieves energy traces
from the Kwollect API using the correct time ranges.

In keeping with the general philosophy of EnOSlib as a library, the rest of the
experiment is the responsibility of the experimenter: running the actual work-
load, and performing data analysis on the energy measurement data. Example
code is show in Figure 4 with resulting data show in Figure 5.

2.2 Events planning

Distributed deployments in the wild are subject to various events like the loss of
connectivity between communicating processes, nodes failures, additions/removal
of resource capabilities, transient resource limitations, . . . Distributed systems
experiments is also about studying the behaviour of systems in the face of such
events. EnOSlib exposes a Planning service allowing the experimenter to sched-
ule events at a specific time. This serves two purposes (1) expressivity : a user can
easily describe a sequence of events and (2) reproducibility : the same scenario

6 B. Jonglez, M. Simonin, et al.

1 # Allocate resources (here, physical servers on G5K)
2 conf = en.G5kConf() \
3 .add_machine(roles=["server"], cluster="nova", nodes=1)
4 .add_machine(roles=["server"], cluster="taurus", nodes=1)
5

6 # Setup monitoring API
7 monitor = en.Kwollect(nodes=roles["server"])
8 monitor.deploy()
9

10 # Run a loop of stress tests under the monitor
11 monitor.start()
12 duration = 2
13 time.sleep(duration)
14 for cpu_cores in [1, 2, 8, 14, 20, 26, 32]:
15 en.run_command(f"stress-ng --cpu {cpu_cores} -t {duration}",
16 roles=roles["server"])
17 time.sleep(duration)
18 monitor.stop()
19

20 # Fetch monitoring data from Kwollect API between start and stop
21 data = monitor.get_metrics(metrics=["wattmetre_power_watt"])

Fig. 4: Example EnOSlib code that collects power measurement from Kwollect
during a CPU stress test. The result is shown in Figure 5

Fig. 5: Power consumption result obtained with EnOSlib using physical
wattmetres (two different physical servers during a CPU stress test)

Multi-provider capabilities in EnOSlib 7

can be replayed. In EnOSlib an event is an action to run at a specific date on a
specific set of hosts. Different types of events are currently supported and show-
cased in Fig. 6: StartEvent that are used to start a process given a command
line, KillEvent that is used to terminate a set of processes (e.g. to simulate
process crashes) and a CGroupEvent used to schedule cgroup changes (e.g. to
throttle some resources: CPU, IOs . . .). The Planning service of EnOSlib is
a collection of events and is responsible to run the various actions in a timely
manner on a distributed set of Hosts. This service is inspired by MockFog [13]
which used such approach to evaluate edge use cases: the EnOSlib Planning
service makes the approach re-usable for other experiments.

1 ps = en.PlanningService()
2

3 ps.add_event(
4 en.StartEvent(
5 date=t1
6 cmd="stress -c 30",
7 host=roles["groupA"],
8 name=f"mysleep"
9)

10)
11

12 ps.add_event(
13 en.CGroupEvent(
14 date=t2
15 cpath="cpuset.cpus",
16 value="1-10",
17 host=roles["groupA"],
18 name=f"mysleep"
19)
20)

30 ps.add_event(
31 en.CGroupEvent(
32 date=t3
33 cpath="cpuset.cpus",
34 value="0-31",
35 host=roles["groupA"],
36 name=f"mysleep"
37)
38)
39

40 # deploy the planning
41 # while monitoring the usage using dstat
42 with en.Dstat(nodes=roles["groupA"]):
43 ps.deploy()
44 # waiting a bit
45 time.sleep(
46 ps.until_end.total_seconds() + 60
47)

Fig. 6: Pseudo code showing the use of the planning service. Line 1 to 38, the
planning service is fed with some events: a stress process will be started at t1, the
available cores to this process identified by its name will be then reduced from
time t2 to t3. Finally the user can draw the CPU usage during the execution
of the planning thanks to the Dstat monitoring service that tracks some basic
system metrics.

2.3 Experiment over multiple infrastructures

Experiments in the Fog/Edge context require heterogeneous resources (e.g. mix-
ing IOT devices and large computing servers) and scalability (e.g. getting lot of
the same resources). Diversity and scalability makes thus some experiments hard
to perform on a single testbed. The provider abstraction offered by EnOSlib can

8 B. Jonglez, M. Simonin, et al.

be a solution since a single user script can embed calls to different providers.
However this approach falls short when it comes to get the resources over different
testbeds at the same time. Indeed depending on the platform status, resources
might not be available or delayed. EnOSlib offers an elegant way to get resources
over different platforms in a synchronized way: the multi-provider abstraction.
The multi-provider abstraction is a new provider that ensures the resources over
different platforms are acquired and released at the same time. This releases the
user from the burden of writing the synchronization code by focusing on the
experimentation logic. A user script is depicted in Fig. 7.

The synchronization algorithm consists in (1) querying each provider for a
given time slot; if all providers agree on the time slot, then (2a) the slots are
actually reserved; otherwise (2b) another time slot is tested. Testing a time-
slot is provider-specific (some infrastructure expose the past and future resource
status which can be leveraged to know in advance if a candidate time slot is
actually possible). There is an obvious race condition between the step (1) and
(2a) or (2b) since the state of the platform might have changed between the two
phases. In the general case it is not a real problem especially when dealing with
reservation far enough in the future.

1 # Naive multi-provider code.
2 # This is not robust.
3 import enoslib as en
4

5 g5k = en.G5k(conf_g5k)
6 roles_g5k, nets_g5k = g5k.init()
7

8 iot = en.Iotlab(iot_conf)
9 roles_iot, nets_iot = iot.init()

10

11 vms = en.Vagrant(vm_conf)
12 roles_vms, nets_vms = vms.init()

1 # Built-in multi-providers support.
2 # It ensures synchronized reservations.
3 import enoslib as en
4

5 g5k = en.G5k(conf_g5k)
6 iot = en.Iotlab(iot_conf)
7 vagrant = en.Vagrant(vagrant_conf)
8

9 roles, networks = en.Providers([
10 g5k,
11 iot_lab,
12 vagrant
13])

Fig. 7: Pseudo-codes illustrating the multi-provider use case.
On the left the user uses three independent providers to get her resources on
Grid’5000, IoT-LAB and local machine (Vagrant virtual machines). However
resources may not be available or delayed on Grid’5000 or IoT-LAB due to the
current platform availability.
On the right the EnOSlib Providers instance can deal with different platforms,
get resources in a synchronized way and return them as a regular Provider

2.4 Jupyter Integration

EnOSlib integrates with Jupyter notebooks, enabling users to interactively de-
sign, execute, and monitor infrastructure and experiments. This integration fa-

Multi-provider capabilities in EnOSlib 9

cilitates real-time introspection, live data visualization, and step-by-step exper-
iment control, enhancing user experience.

To effectively display complex outputs within Jupyter notebooks, such as ta-
bles or plots, appropriate formatting is necessary. This may involve using specific
display functions or formatting outputs as HTML or Markdown to ensure cor-
rect rendering. Notebook examples demonstrating these capabilities is available
online.4

3 Edge-to-cloud use-case: distributed video processing

We will consider a common use-case throughout the tutorial: an edge-to-cloud
video processing application designed to detect roaming animals5. Its high-level
architecture is depicted in Figure 8.

Fig. 8: Edge-to-cloud video processing application

4 https://discovery.gitlabpages.inria.fr/enoslib/jupyter/
5 https://gitlab.inria.fr/STACK-RESEARCH-GROUP/software/

edge-to-cloud-video-processing

https://discovery.gitlabpages.inria.fr/enoslib/jupyter/
https://gitlab.inria.fr/STACK-RESEARCH-GROUP/software/edge-to-cloud-video-processing
https://gitlab.inria.fr/STACK-RESEARCH-GROUP/software/edge-to-cloud-video-processing

10 B. Jonglez, M. Simonin, et al.

This use-case is made of two main software components:

1. Motion Detector: Receives a video feed and continuously tries to detect
motion in the images. Whenever a motion event is detected, the correspond-
ing video frames are sent to the Object Recognizer for further analysis. This
service typically runs on many small devices that are close to each video
source to minimize the amount of data transfers.

2. Object Recognizer: Receives video frames with motion events and tries to
detect which object or animal is visible in the picture. This service typically
has a single instance running in a cloud infrastructure.

The use-case includes a benchmark that consists of injecting a pre-recorded
video feed with known parameters (configurable amount of motion over time,
with a choice of several animals). It also includes advanced monitoring metrics
from both the system and from the application itself (response time, frames per
second...)

To deploy this use-case, we will use a simple topology with two Motion De-
tectors running on small servers such as Nvidia Jetson devices, and one Object
Recognizer running on a regular server. This abstract deployment topology is
show in Figure 9. We will instantiate different variants of this deployment model
during the tutorial.

Fig. 9: The abstract deployment model we will use during the tutorial.

4 Methodology: from network emulation to
multi-provider experiments

EnOSlib is well suited for experimenting with distributed system software: dis-
tributed databases, P2P systems, edge clusters... For this kind of experiments,

Multi-provider capabilities in EnOSlib 11

we usually want to run the actual software (which rules out simulation) and we
want to run it on real or virtualized hardware to obtain realistic system perfor-
mance. However, we also want a high degree of control on the network, to be
able to answer research questions such as: What is the performance of my system
under high network latency?, or: How does my distributed system behave when
nodes get disconnected?

In this situation, network emulation is a helpful tool: it allows to artificially
introduce network issues, such as additional delay or packet loss, while running
the real target software on a real testbed.

4.1 Step-by-step workflow

Run software
on a single node

Run software
on several nodes

Run software
on distributed nodes

Fig. 10: Workflow for designing a complex distributed system experiment

When designing a complex distributed system experiment, a common work-
flow is the following:

1. run the target software on a single node to make sure that the deployment
process works well (e.g. a virtual machine on the user laptop)

2. run the target software on several nodes connected by a local network, and
use network emulation to study the target software under controlled condi-
tions (e.g. run experiments with increasing latency and measure the resulting
performance)

3. run the target software on distributed nodes, possibly on simultaneously on
multiple platforms (e.g. Grid’5000, Chameleon Cloud, local infrastructure...),
to study the target software under real network conditions

For each step of the workflow, the difficulty, cost and complexity of the de-
ployment is increasing. To make sure that later steps work properly, the exper-
imenter can rely on work done in previous steps to make the deployment more
robust, building the experimental code in an iterative way.

4.2 Iterating experiments

In experimental research, particularly when assessing system behavior under
varying conditions, it is essential to ensure that each test iteration starts from
a clean and consistent state. To ease systematic experimentation, it is beneficial
to encapsulate the experimental workflow as illustrated in Figure 10 – including
resource reservation, setup, benchmark, resource teardown – within an atomic
process (e.g. within a dedicated function).

12 B. Jonglez, M. Simonin, et al.

import enoslib as en

LATENCIES = ["10ms", "20ms", "40ms", "100ms"]

def reserve_resources():
my_conf = en.MyProviderConf() \

.add_machine(roles=["server"], nodes=3) \

.add_machine(roles=["client"], nodes=1)
provider = en.MyProvider(my_conf)
roles, networks = provider.init()
return provider, roles, networks

def setup_phase(roles):
Install all necessary software on all nodes

def benchmark_phase(roles):
Run benchmark against the system and collect results
en.run_command("./benchmark.sh", roles=roles["client"])

def run_experiment_with_emulation(roles, latency):
Install and setup all software
setup_phase(roles)

Apply network emulation: all nodes will have the
same latency for outgoing packets.
netem = en.Netem()
netem.add_constraints(f"delay {latency}", roles["server"],

symmetric=False)
netem.deploy()
netem.validate()

Run experiment
results = benchmark_phase(roles)

Save results
with open(f"results/{latency}/output.csv", "w") as f:

...

Deconfigure resources before next iteration
netem.destroy()

Main program
for latency in LATENCIES:

We reserve and release resources for each iteration.
This is costly but ensures no side-effect.
provider, roles, networks = reserve_resources()
run_experiment_with_emulation(roles, latency)
provider.destroy()

Fig. 11: Typical pattern to iterate experiments with network emulation

Multi-provider capabilities in EnOSlib 13

This design ensures that each experiment is executed independently and that
previous runs do not influence subsequent ones.

Figure 11 illustrates how to iterate over different network latencies using
EnOSlib. For each latency value, the experiment reserves resources, sets up the
environment (setup_phase), applies the specified network latency using Netem 6,
runs the benchmark (benchmark_phase), and finally cleans up the resources
using destroy functions.

5 Multi-site experiment on Grid’5000

We deploy the use-case from Section 3 on multiple Grid’5000 sites. This is con-
ceptually similar to a multi-provider experiment, but it is a bit simpler on two
key aspects: bidirectional network connectivity between the sites is ensured, and
we can use the same authentication method to access resources on both sites.
Section 6 will extend the experiment to an actual multi-provider context.

Fig. 12: Multi-site deployment of the use-case on Grid’5000.

We will use two Grid’5000 clusters:

– estats7 in Toulouse, a cluster with 12 Nvidia AGX Xavier devices. These are
small but very capable ARM64 devices, similar to a higher-end Raspberry
Pi with an integrated GPU.

– nova8 in Lyon, a cluster with very standard x86_64 Dell servers. Any other
cluster would also work, but this one has the advantage of being energy-
monitored with physical wattmetres.

6 https://discovery.gitlabpages.inria.fr/enoslib/tutorials/network_emulation.html
7 https://www.grid5000.fr/w/Toulouse:Hardware#estats
8 https://www.grid5000.fr/w/Lyon:Hardware#nova

https://discovery.gitlabpages.inria.fr/enoslib/tutorials/network_emulation.html
https://www.grid5000.fr/w/Toulouse:Hardware#estats
https://www.grid5000.fr/w/Lyon:Hardware#nova

14 B. Jonglez, M. Simonin, et al.

To deploy the application, we rely on Kubernetes, and specifically the K3s
Service provided by EnOSlib. It allows to easily deploy K3S clusters on the
nodes of the experiment. Anticipating the multi-provider experiment, we deploy
two different Kubernetes clusters: first for the edge location, which will run the
Motion Detector Application, and then for the cloud location, which will run the
Object Recognizer as well as system monitoring services. Figure 13 shows how
this is done with EnOSlib.

import enoslib as en

def videoprocessing_setup(roles):
Deploy two different Kubernetes cluster
k3s_edge = en.K3s(master=roles["edge"][0], agent=roles["edge"])
k3s_edge.deploy()
k3s_cloud = en.K3s(master=roles["cloud"][0], agent=roles["cloud"])
k3s_cloud.deploy()
Copy Kubernetes deployment files to remote nodes.
Adapt deployment files to point to service addresses.
Run "kubectl apply" commands on master nodes.

Fig. 13: Simplified code for deploying two K3S clusters (edge and cloud)

6 Multi-provider experiment on Chameleon Edge and
Grid’5000

We extend the experiment: instead of running on multiple sites from the same
testbed, we now run an experiment spanning multiple testbeds. We deploy the
Motion Detector on Jetson Nano devices from CHI@Edge [14] (CHameleon In-
frastructure at Edge), while still deploying the main server in Grid’5000. This
deployment is illustrated in Figure 14 while a simplified code for the deployment
is show in Figure 15.

One of the challenges in multi-testbed experiments is network interconnec-
tion. In our case, the Motion Detector in CHI@Edge needs to be able to send
data to the Object Recognizer in Grid’5000. There are several possible ways to
handle this challenge:

Native IP connectivity If all testbeds have public IP addresses (e.g. using IPv6),
nodes can communicate directly with IP over the public Internet. On Grid’5000,
IPv6 access is behind a firewall by default, but it can be opened on-demand

Multi-provider capabilities in EnOSlib 15

Fig. 14: Multi-provider deployment of the use-case on Chameleon Edge
(CHI@EDGE) and Grid’5000.

using the Reconfigurable Firewall service9. This is show-cased in another tutorial
involving Grid’5000 and FIT IoT-LAB10.

Native L2 connectivity Some network-oriented testbeds such as FABRIC [5]
offer advanced network services, including layer-2 connectivity between testbeds.
Since this is somewhat complex to setup and only works if testbeds are already
interconnected, this is mostly designed for network-focused experiments that
really require layer-2 connectivity.

Tunneling The last resort is often to use tunnels, such as a Wireguard VPN or
SSH-based tunneling. This does not give any guarantees on performance, but
can provide basic connectivity.

Chameleon Cloud does not support IPv6, while Grid’5000 provides no public
IPv4 addresses on nodes. As a result, the experiment relies on tunneling as a
last resort.

9 https://www.grid5000.fr/w/Reconfigurable_Firewall
10 https://discovery.gitlabpages.inria.fr/enoslib/jupyter/fit_and_g5k/01_

networking.html

https://www.grid5000.fr/w/Reconfigurable_Firewall
https://discovery.gitlabpages.inria.fr/enoslib/jupyter/fit_and_g5k/01_networking.html
https://discovery.gitlabpages.inria.fr/enoslib/jupyter/fit_and_g5k/01_networking.html

16 B. Jonglez, M. Simonin, et al.

import enoslib as en

chiedge_conf = {
"walltime": "2:00:00",
"lease_name": "enoslib-chiedge-lease",
"resources": {

"machines": [{
"roles": ["edge"],
"device_name": "iot-jetson09",
"container": {

"name": "cli-container",
This needs to be a ARM64 image
"image": "debian:12",

},
}]

}
}
g5k_conf = {

"walltime": "2:00:00",
"job_name": "enoslib-g5k-job",
"resources": {

"machines": [{
"roles": ["cloud"],
"cluster": "nova",
"nodes": 1,

}]
}

}
chiedge = en.ChameleonEdge(en.ChameleonEdgeConf.from_dictionary(chiedge_conf))
g5k = en.G5k(en.G5kConf.from_dictionary(g5k_conf))
roles, networks = en.Providers([g5k, chiedge])

Fig. 15: Simplified code for multi-provider deployment of the use-case)

Multi-provider capabilities in EnOSlib 17

7 Conclusion

Since its initial development in 2016, EnOSlib has reached a level of maturity
and has been used in many different experiments and projects. At the same
time, new features are added regularly to make it easier to perform new kind of
distributed experiments.

Among the new features, native multi-provider support is a key enabler for
working on the edge-to-cloud continuum. When performing experiments, re-
sources are heterogeneous, are located very far apart, and are often using differ-
ent infrastructure management software: this makes it difficult to simply obtain
simultaneous access on all resources, let alone execute code on all these resources
to orchestrate an experiment. The tutorial illustrates how to orchestrate a multi-
testbed experiment through a use-case involving communication between edge
nodes and cloud nodes. The experiment is deployed on both Grid’5000 in France
and Chameleon CHI@Edge in the US.

Acknowledgement

Development of EnOSlib was initially supported by Inria and Orange Labs in the
context of the Discovery Open Science initiative. The software is maintained by a
core team from Inria on Gitlab11 and receives contributions from many external
contributors: over the years, 34 individual contributors have committed code in
the git repository. The authors would like to thank all EnOSlib contributors for
their work, as well as all users for their precious feedback to help improve the
software.

Some experiments were carried out using the Grid’5000 testbed, supported
by a scientific interest group hosted by Inria and including CNRS, RENATER
and several Universities as well as other organizations.

Some experiments were obtained using the Chameleon testbed supported by
the National Science Foundation. We thank the Chameleon team for allowing
access to the authors to help develop and test EnOSlib on their infrastructure.

References

1. hubblo-org/scaphandre (Apr 2025), https://github.com/hubblo-org/scaphandre,
original-date: 2020-10-16T14:10:05Z

2. SLICES (scientific large scale infrastructure for computing/communication exper-
imental studies). https://slices-ri.eu (2025), accessed April 24, 2025

3. Adjih, C., Baccelli, E., Fleury, E., Harter, G., Mitton, N., Noel, T., Pissard-
Gibollet, R., Saint-Marcel, F., Schreiner, G., Vandaele, J., Watteyne, T.: FIT IoT-
LAB: A large scale open experimental IoT testbed. In: 2015 IEEE 2nd World Forum
on Internet of Things (WF-IoT). pp. 459–464 (Dec 2015). https://doi.org/10.1109/
WF-IoT.2015.7389098, https://ieeexplore.ieee.org/abstract/document/7389098

11 https://gitlab.inria.fr/discovery/enoslib

https://github.com/hubblo-org/scaphandre
https://slices-ri.eu
https://doi.org/10.1109/WF-IoT.2015.7389098
https://doi.org/10.1109/WF-IoT.2015.7389098
https://doi.org/10.1109/WF-IoT.2015.7389098
https://doi.org/10.1109/WF-IoT.2015.7389098
https://ieeexplore.ieee.org/abstract/document/7389098
https://gitlab.inria.fr/discovery/enoslib

18 B. Jonglez, M. Simonin, et al.

4. Amaral, M., Chen, H., Chiba, T., Nakazawa, R., Choochotkaew, S., Lee,
E.K., Eilam, T.: Kepler: A Framework to Calculate the Energy Consump-
tion of Containerized Applications. In: 2023 IEEE 16th International Confer-
ence on Cloud Computing (CLOUD). pp. 69–71 (Jul 2023). https://doi.org/10.
1109/CLOUD60044.2023.00017, https://ieeexplore.ieee.org/abstract/document/
10254956, iSSN: 2159-6190

5. Baldin, I., Nikolich, A., Griffioen, J., Monga, I.I.S., Wang, K.C., Lehman, T., Ruth,
P.: FABRIC: A National-Scale Programmable Experimental Network Infrastruc-
ture. IEEE Internet Computing 23(6), 38–47 (Nov 2019). https://doi.org/10.1109/
MIC.2019.2958545, https://ieeexplore.ieee.org/abstract/document/8972790

6. Balouek, D., Amarie, A.C., Charrier, G., Desprez, F., Jeannot, E., Jeanvoine,
E., Lèbre, A., Margery, D., Niclausse, N., Nussbaum, L., Richard, O., Perez, C.,
Quesnel, F., Rohr, C., Sarzyniec, L.: Adding Virtualization Capabilities to the
Grid’5000 Testbed. In: Ivanov, I.I., van Sinderen, M., Leymann, F., Shan, T. (eds.)
Cloud Computing and Services Science. pp. 3–20. Springer International Publish-
ing, Cham (2013). https://doi.org/10.1007/978-3-319-04519-1_1

7. Balouek-Thomert, D., Rodero, I., Parashar, M.: Evaluating policy-driven adap-
tation on the edge-to-cloud continuum. In: 2021 IEEE/ACM HPC for Ur-
gent Decision Making (UrgentHPC). pp. 11–20 (2021). https://doi.org/10.1109/
UrgentHPC54802.2021.00007

8. Cherrueau, R.A., Delavergne, M., Van Kempen, A., Lebre, A., Pertin, D., Balder-
rama, J.R., Simonet, A., Simonin, M.: Enoslib: A library for experiment-driven
research in distributed computing. IEEE Transactions on Parallel and Distributed
Systems 33(6), 1464–1477 (2021). https://doi.org/10.1109/TPDS.2021.3111159

9. Courageux-Sudan, C., Orgerie, A.C., Quinson, M.: Studying the end-to-end per-
formance, energy consumption and carbon footprint of fog applications. In: 2024
IEEE Symposium on Computers and Communications (ISCC). pp. 1–7 (2024).
https://doi.org/10.1109/ISCC61673.2024.10733735

10. Delamare, S., Nussbaum, L.: Kwollect: Metrics Collection for Experiments at
Scale. In: IEEE INFOCOM 2021 - IEEE Conference on Computer Commu-
nications Workshops (INFOCOM WKSHPS). pp. 1–6 (May 2021). https://
doi.org/10.1109/INFOCOMWKSHPS51825.2021.9484540, https://ieeexplore.ieee.
org/abstract/document/9484540

11. Fieni, G., Acero, D.R., Rust, P., Rouvoy, R.: PowerAPI: A Python framework
for building software-defined power meters. Journal of Open Source Software
9(98), 6670 (Jun 2024). https://doi.org/10.21105/joss.06670, https://hal.science/
hal-04601379, publisher: Open Journals

12. Guilloteau, Q., Bleuzen, J., Poquet, M., Richard, O.: Painless transposition of
reproducible distributed environments with nixos compose. In: 2022 IEEE In-
ternational Conference on Cluster Computing (CLUSTER). pp. 1–12 (2022).
https://doi.org/10.1109/CLUSTER51413.2022.00051

13. Hasenburg, J., Grambow, M., Bermbach, D.: MockFog 2.0: Automated execution of
fog application experiments in the cloud. IEEE Transactions on Cloud Computing
Early Access (2021)

14. Keahey, K., Anderson, J., Sherman, M., Zhen, Z., Powers, M., Brunkan, I., Cooper,
A.: Chameleon@ Edge Community Workshop Report (2021)

15. Keahey, K., Anderson, J., Zhen, Z., Riteau, P., Ruth, P., Stanzione, D., Cevik, M.,
Colleran, J., Gunawi, H.S., Hammock, C., Mambretti, J., Barnes, A., Halbah, F.,
Rocha, A., Stubbs, J.: Lessons Learned from the Chameleon Testbed. pp. 219–233
(2020), https://www.usenix.org/conference/atc20/presentation/keahey

https://doi.org/10.1109/CLOUD60044.2023.00017
https://doi.org/10.1109/CLOUD60044.2023.00017
https://doi.org/10.1109/CLOUD60044.2023.00017
https://doi.org/10.1109/CLOUD60044.2023.00017
https://ieeexplore.ieee.org/abstract/document/10254956
https://ieeexplore.ieee.org/abstract/document/10254956
https://doi.org/10.1109/MIC.2019.2958545
https://doi.org/10.1109/MIC.2019.2958545
https://doi.org/10.1109/MIC.2019.2958545
https://doi.org/10.1109/MIC.2019.2958545
https://ieeexplore.ieee.org/abstract/document/8972790
https://doi.org/10.1007/978-3-319-04519-1_1
https://doi.org/10.1007/978-3-319-04519-1_1
https://doi.org/10.1109/UrgentHPC54802.2021.00007
https://doi.org/10.1109/UrgentHPC54802.2021.00007
https://doi.org/10.1109/UrgentHPC54802.2021.00007
https://doi.org/10.1109/UrgentHPC54802.2021.00007
https://doi.org/10.1109/TPDS.2021.3111159
https://doi.org/10.1109/TPDS.2021.3111159
https://doi.org/10.1109/ISCC61673.2024.10733735
https://doi.org/10.1109/ISCC61673.2024.10733735
https://doi.org/10.1109/INFOCOMWKSHPS51825.2021.9484540
https://doi.org/10.1109/INFOCOMWKSHPS51825.2021.9484540
https://doi.org/10.1109/INFOCOMWKSHPS51825.2021.9484540
https://doi.org/10.1109/INFOCOMWKSHPS51825.2021.9484540
https://ieeexplore.ieee.org/abstract/document/9484540
https://ieeexplore.ieee.org/abstract/document/9484540
https://doi.org/10.21105/joss.06670
https://doi.org/10.21105/joss.06670
https://hal.science/hal-04601379
https://hal.science/hal-04601379
https://doi.org/10.1109/CLUSTER51413.2022.00051
https://doi.org/10.1109/CLUSTER51413.2022.00051
https://www.usenix.org/conference/atc20/presentation/keahey

Multi-provider capabilities in EnOSlib 19

16. Kp, G., Pierre, G., Rouvoy, R.: Studying the energy consumption of stream process-
ing engines in the cloud. In: 2023 IEEE International Conference on Cloud Engi-
neering (IC2E). pp. 99–106 (2023). https://doi.org/10.1109/IC2E59103.2023.00019

17. Lambert, T., Ibrahim, S., Jain, T., Guyon, D.: Stragglers’ detection in big data an-
alytic systems: The impact of heartbeat arrival. In: 2022 22nd IEEE International
Symposium on Cluster, Cloud and Internet Computing (CCGrid). pp. 747–751
(2022). https://doi.org/10.1109/CCGrid54584.2022.00084

18. Mokhtari, A., Jonglez, B., Ledoux, T.: Towards digital sustainability: Involving
cloud users as key players. In: 2024 IEEE International Conference on Cloud En-
gineering (IC2E). pp. 126–132 (2024). https://doi.org/10.1109/IC2E61754.2024.
00021

19. Noureddine, A.: PowerJoular and JoularJX: Multi-Platform Software Power Mon-
itoring Tools. In: 18th International Conference on Intelligent Environments.
Biarritz, France (Jun 2022). https://doi.org/10.1109/IE54923.2022.9826760, https:
//hal.science/hal-03608223

20. Philippe, J., Omond, A., Coullon, H., Prud’Homme, C., Raïs, I.: Fast choreog-
raphy of cross-devops reconfiguration with ballet: A multi-site openstack case
study. In: 2024 IEEE International Conference on Software Analysis, Evolution
and Reengineering (SANER). IEEE Computer Society, Rovaniemi, Finland (mar
2024). https://doi.org/10.1109/SANER60148.2024.00007

21. Rac, S., Sanyal, R., Brorsson, M.: A cloud-edge continuum experimental method-
ology applied to a 5g core study (2023), https://arxiv.org/abs/2301.11128

22. Rosendo, D., Mattoso, M., Costan, A., Souza, R., Pina, D., Valduriez, P., Antoniu,
G.: Provlight: Efficient workflow provenance capture on the edge-to-cloud contin-
uum. In: 2023 IEEE International Conference on Cluster Computing (CLUSTER).
pp. 221–233 (2023). https://doi.org/10.1109/CLUSTER52292.2023.00026

23. Rosendo, D., Silva, P., Simonin, M., Costan, A., Antoniu, G.: E2clab: Exploring
the computing continuum through repeatable, replicable and reproducible edge-to-
cloud experiments. In: 2020 IEEE International Conference on Cluster Computing
(CLUSTER). pp. 176–186 (2020). https://doi.org/10.1109/CLUSTER49012.2020.
00028

https://doi.org/10.1109/IC2E59103.2023.00019
https://doi.org/10.1109/IC2E59103.2023.00019
https://doi.org/10.1109/CCGrid54584.2022.00084
https://doi.org/10.1109/CCGrid54584.2022.00084
https://doi.org/10.1109/IC2E61754.2024.00021
https://doi.org/10.1109/IC2E61754.2024.00021
https://doi.org/10.1109/IC2E61754.2024.00021
https://doi.org/10.1109/IC2E61754.2024.00021
https://doi.org/10.1109/IE54923.2022.9826760
https://doi.org/10.1109/IE54923.2022.9826760
https://hal.science/hal-03608223
https://hal.science/hal-03608223
https://doi.org/10.1109/SANER60148.2024.00007
https://doi.org/10.1109/SANER60148.2024.00007
https://arxiv.org/abs/2301.11128
https://doi.org/10.1109/CLUSTER52292.2023.00026
https://doi.org/10.1109/CLUSTER52292.2023.00026
https://doi.org/10.1109/CLUSTER49012.2020.00028
https://doi.org/10.1109/CLUSTER49012.2020.00028
https://doi.org/10.1109/CLUSTER49012.2020.00028
https://doi.org/10.1109/CLUSTER49012.2020.00028

	Multi-provider capabilities in EnOSlib: driving distributed system experiments on the edge-to-cloud continuum

