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We propose an overview of the decentralized reconfiguration language CONCERTO-D through its
Maude formalization. CONCERTO-D extends the already published CONCERTO language. CONCERTO-
D improves on two different parameters compared with related work: the decentralized coordination
of numerous local reconfiguration plans which avoid a single point of failure when considering un-
stable networks such as edge computing, or cyber-physical systems (CPS) for instance; and a mech-
anized formal semantics of the language with Maude which offers guarantees on the executability of
the semantics. Throughout the paper, the CONCERTO-D language and its semantics are exemplified
with a reconfiguration extracted from a real case study on a CPS. We rely on the Maude formal speci-
fication language, which is based on rewriting logic, and consequently perfectly suited for describing
a concurrent model.

1 Introduction

Running and maintaining large-scale distributed software is now a commonplace activity, but managing
the inherent complexity of this task requires dedicated tools, models, and languages. The complexity
is particularly apparent when distributed software needs to be reconfigured during execution, either to
satisfy changing requirements or to carry out maintenance operations.

The DevOps community (and associated tools) as well as component-base software engineering
(CBSE) are the main domains focussing on the deployment and reconfiguration of distributed software
systems. A reconfiguration consists of a set of actions to execute on the different pieces of software,
distributed across the network, to lead the system in the new desired configuration (i.e., state). In these
domains, actions are almost always orchestrated by a central coordinator [25, 9], i.e., an entity that keeps
track of the actions to apply and their dependencies, as well as the global state of the distributed system.

However, a centralized model is necessarily limited in terms of resilience, as it creates a single point
of failure. For instance, in the context of constrained (e.g., energy, communications) cyber-physical sys-
tems [21, 22], or edge computing where network disconnections are commonplace, as well as in the
context of large-scale projects where cross-DevOps teams [16, 23, 25, 26] have to collaborate, decentral-
ized reconfiguration models are preferred.

With this work, we extend the semantics of the reconfiguration language CONCERTO [6] and turn
it into a decentralized model called CONCERTO-D, by extending the semantics to describe the specifics
of communication and synchronization between components. In CONCERTO-D multiple coordinators
collaborate to achieve their respective local reconfigurations (one for each node). Both CONCERTO [4, 5]
and CONCERTO-D [23, 21, 22] have been the subject of experimental studies to validate the approach
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Figure 1: Full overview of the CPS use case with 2+n nodes hosting database, system, n listeners, and
n sensors.

and compare it to related work [10, 25]. In particular, and while this is not the main subject of this paper,
CONCERTO and CONCERTO-D allow better parallel execution of reconfiguration actions compared to
the related work, thus leading to faster reconfigurations.

To support the development of this decentralized semantics, it appeared necessary to go beyond a
pen-and-paper approach and to provide a mechanized formalization of the semantics. To this end, we
used Maude [8, 20], a language based on rewriting logic, and consequently perfectly suited to describing
a concurrent model. Developing and formalizing the semantics of CONCERTO-D in Maude helped us
manage the complexity of the model, and clarify it where needed, but it also allowed us to generate
tools such as an interpreter and a model-checker for these semantics. A Maude program describes a
logical theory, while a Maude computation consists of logical deductions using the axioms specified in
the theory.

Throughout the paper, we will use an example taken from a real case study from the literature: a
wildlife monitoring system that utilizes sensors to capture animal sounds [19] illustrated in Figure 1.
These sensors are linked to a gateway and calibrated to specific sound frequencies. Reconfiguration is
regularly required in this system to adjust the listening frequency of each sensor. However, during the
reconfiguration process, the sensor must temporarily cease listening. Similarly, if the gateway fails to
receive data from a sensor, the sensor is required to halt its observation activities. The collected data is
stored in a remote database. In such a use case, disconnections are common between listeners and sen-
sors. A central coordination of the reconfiguration program is typically a single point of failure, which
makes the system fully inactive during unavailability. Furthermore, when facing disconnections, it is
more difficult to maintain the global state of the system, which slows down the process: synchroniza-
tion with the central entity is required even for purely local actions. A decentralized language such as
CONCERTO-D is preferable in such a context.

In this paper, we give an overview of the semantics of CONCERTO-D through its Maude formaliza-
tion. The complete Maude specification with all the rules is available at https://doi.org/10.5281/
zenodo.12786127.

First, Section 2 presents how the life cycles of components, and the creation and modification of a
components assembly are formalized in CONCERTO-D. Second, Section 3 gives an overview of the main
semantics rules of CONCERTO-D and how are formalized communications in CONCERTO-D. Finally,
Section 4 and Section 5 respectively give the related work and a conclusion on this contribution.

2 Control components and reconfiguration language

This section presents the structural concepts of CONCERTO-D as well as its reconfiguration language.
Some elements of the formalization in Maude are included, as well as examples based on our case study.

https://doi.org/10.5281/zenodo.12786127
https://doi.org/10.5281/zenodo.12786127
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2.1 Control components

In CONCERTO-D, a distributed software system is modeled as an assembly of control component in-
stances, linked together via ports (i.e., interfaces), to represent dependencies in their life cycles (e.g.,
data exchanges, or other interactions between components). There are two types of ports in such con-
nections: provide ports and use ports. A provide port represents information or a resource offered by
a component when the port is active. Conversely, a use port indicates that a component requires some
information or resources to perform.

Each piece of software (i.e., component, service), identified by a unique identifier, is an instance of a
control component type, that models a component’s life cycle as a set of places and transitions. Each port
is bound to a subset of the life cycle (i.e., places and transitions) that is called a group. Places represent
milestones of the life cycle. A specific initial place serves as the starting point for the component’s life
cycle. Transitions represent concrete actions to perform between places (e.g., admin commands).

The dynamic nature of components is captured by their behaviors. A behavior is a subset of the
component’s transitions. At any given point, a control component instance executes one behavior, i.e.,
only the transitions in this behavior can be fired. Requests to change the active behavior for a component
(see reconfiguration actions in Section 2.2) are queued and executed in the order in which they are
received: a behavior remains active until no more transitions in it can be fired, at which point the behavior
is changed to the next requested behavior, if any. This mechanism makes up the behavioral interface of
components.

Informal example. Figure 1 depicts an assembly modeling our use case, where distributed sensors
interact with a system through listeners. Physically, the components are distributed on several nodes. The
first node serves as a host for the database component responsible for storing recorded data obtained from
sensors. The second node comprises the components system and listener. The system component
establishes a connection with the database through a use port (represented using the UML notation),
enabling the usage of the database’s service. Furthermore, the system is interconnected with n listeners,
each corresponding to a program responsible for monitoring and reconfiguring remote sensors. These
listeners are connected to system via their use port. Finally, each sensori is hosted on a node and is
connected to its associated listeneri.

Figure 2 shows the internals of some components of this assembly, omitting others (i.e., database,
system) for clarity. Each listener has four places: off, paused, configured, and running; and three be-
haviors deploy, update, and destroy. The sensors have five places: off, provisioned, installed,
configured, and running; and also three behaviors: start, pause, stop. Each listener has two con-
nections with its respective sensor. Through the first connection, the listener exposes the configuration
to apply on the sensor (e.g., frequency of listening). Through the second connection, the listener offers a
service to which data can be sent by the sensor when observing.

Maude specification. Let us present the definitions of sorts, subsorts, and operators used to encode
the above syntactic aspects of the CONCERTO-D model, starting from elementary concepts to the con-
struction of a net of CONCERTO-D components. In Maude, a type hierarchy can be defined using the
keywords sort and subsort. An operator definition starts with the keyword op followed by the operator
name and type signature; several operators with the same signature can be defined using ops.

A component type is defined by a set of places, an initial place, and a set of transitions. The definition
also includes the behaviors (sets of transitions) of the component type, and its use and provide ports, each
bound to a group of places. In the definition below, some details are omitted for simplicity.
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We use predefined data structures and the module system of Maude to import the parameterized
module SET{Place} and define the sort Places to be a supersort of SET{Place}. Generally, given a
sort T, we let Ts stand for SET{T} and QT stand for LIST{T}.

1 sorts Place InitialPlace Transition Behavior UsePort ProvidePort GroupUse GroupProvide
2 ComponentType .
3 sorts Places Transitions Behaviors GroupUses GroupProvides .
4 subsort InitialPlace < Place .
5

6 −−− [...]
7 op b(_) : Transitions -> Behavior [ctor] .
8 op g(_?_) : UsePort Places -> GroupUse [ctor] .
9 op g(_!_) : ProvidePort Places -> GroupProvide [ctor] .

10

11 op { places: _,
12 initial: _,
13 −−− [...]
14 transitions: _,
15 behaviors: _,
16 groupUses: _,
17 groupProvides: _
18 } :
19 Places InitialPlace
20 −−− [...]
21 Transitions Behaviors GroupUses GroupProvides ->
22 ComponentType
23 [ctor] .

Example in Maude. We can now describe the component type sensor (an instance of which is dis-
played on the right of Figure 2). We first define a few constants corresponding to the element of the
component type, then the type itself:

1 ops Running Configured Installed Provisioned Off : -> Place .
2 op Off : -> InitPlace .
3 −−− [...]
4 ops RcvService ConfigService : -> UsePort .
5 ops Start11 Start12 Start13 Start2 Start3 Start4 Pause1 Stop1 : -> Transition .
6 ops Start Pause Stop : -> Behavior .
7

8 eq Deploy = b(Start11,Start12,Start13,Start2,Start3,Start4) .
9 eq Pause = b(Pause1) .

10 eq Stop = b(Stop1) .
11 op sensor : -> ComponentType .
12 eq sensor =
13 { places: Running, Configured, Installed, Provisioned, Off,
14 initial: Off,
15 −−− [...]
16 transitions: (Start11,Start12,Start13,Start2,Start3,Start4,Pause1,Stop1),
17 behaviors: (Start, Pause, Stop),
18 groupUses: g(RcvService ! (Configured, Running)),
19 g(ConfigService ! (Configured, Installed, Running)),
20 groupProvides: empty } .
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2.2 Reconfiguration language and assembly of components

To allow the modification of assemblies, CONCERTO-D proposes a simple imperative language for writ-
ing reconfiguration programs, that offers four commonly used topological actions to create or modify
the existing assemblies: add(idc,c), del(idc) (creation and deletion of control component instances),
con(idc1,u, idc2, p), dcon(idc1,u, idc2, p) (connection and disconnection between two control component
instances), where idc is an instance identifier, c a component type, u a use port, p a provide port. Besides
these actions, two additional actions manage the execution of behaviors: pushB(idc,b, idb) to request the
execution of a behavior b on the component instance idc; and wait(idc, idb) to synchronize onto the end
of a given behavior. idc is a component instance identifier, and idb the identifier of a given pushB.

As a decentralized coordination model, CONCERTO-D considers a system of n nodes, and a partition
of component instances over these nodes. Each node operates its own local CONCERTO-D controller
and runs its own reconfiguration program. Concrete communications allow the synchronization of ac-
tions between paired components. This is an evolution of previous work on the CONCERTO model [6],
in which a single central entity executed the reconfiguration and synchronization of components, and
communications were implicit. Two examples of CONCERTO-D reconfiguration programs in our case
study are given in Listings 1 and 2.

Listing 1: Listeners reconfiguration on node2

for i in range(nb_listener):
pushB(listeneri, update, 2+i*2)
pushB(listeneri, deploy, 3+i*2)

Listing 2: One sensor reconfiguration on node2+i

pushB(sensori, pause, 0)
wait(listeneri, 2+i*2)
pushB(sensori, start,1)

In CONCERTO-D reconfiguration, programs apply changes to the current assembly of components,
i.e., component instances and their connection, and to the queue of requested behaviors for each com-
ponent instance. A specific instance of a component (and its state at any given point of the execution)
is specified by its component type, a queue of identified behaviors to be executed by the instance, and a
marking that indicates the places reached and transitions fired.

1 sorts Instance Id PushedBehavior TransitionEnding Marking .
2

3 op (_;_) : Id Behavior -> PushedBehavior [ctor] .
4 op m(_,_,_) : Places Transitions TransitionEndings -> Marking [ctor] .
5 op { type: _,
6 queue: _,
7 marking: _
8 } :
9 ComponentType List{PushedBehavior} Marking -> Instance [ctor] .

To illustrate this, the definition below describes an instance sensor1 of type sensor, in a state where
only the place running is marked, and a single behavior pause is pending in the queue of behaviors.
This corresponds to the state (0) in Figure 2.

1 eq instanceS1 = { type: sensor,
2 queue: (0 ; Pause),
3 marking: m(Running, empty, empty) } .
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In order to describe an assembly, it is also necessary to specify the connections between the ports of
its component instances, through their identifiers.

1 sort Connection .
2 sorts Connections .
3 op (_,_)--(_,_) : Id UsePort Id ProvidePort -> Connection [ctor] .

Here is an example of such connections between node2 and node3:

1 eq connectionSL1 = (sensor1, RcvService)--(listener1, Rcv) .
2 eq connectionSL2 = (sensor1, ConfigService)--(listener1, Config) .

We now define actions that can be executed to perform a reconfiguration on a CONCERTO-D assem-
bly.

1 sorts Action Program .
2 subsort List{Action} < Program .
3

4 op add(_,_) : Id ComponentType -> Action [ctor] .
5 op del(_) : Id -> Action [ctor] .
6 op pushB(_,_,_) : Id Behavior Id -> Action [ctor] .
7 op con(_) : Connection -> Action [ctor] .
8 op dcon(_) : Connection -> Action [ctor] .
9 op wait(_,_) : Id Id -> Action [ctor] .

The reconfiguration program given in Listing 2 (as instantiated specifically for node3) can thus be
specified in Maude as follows:

eq programNode3 =
pushB(sensor1, start, 0) wait(listener1, 4) pushB(sensor1, start, 1) .

3 Elements of operational semantics

CONCERTO-D is equipped with a small-step semantics. We first illustrate the execution of a reconfigu-
ration on our use case to give an intuition of this semantics.

We consider deployed and running components, i.e., the places running are marked in all listener
and sensor components. From there, we aim to trigger an update of each sensor’s listening frequency.
Hence, each listener has to pause to change its configuration, forcing the sensors to pause as well.

Listings 1 and 2 give the reconfiguration programs respectively for all listeners (all hosted on the
same node node2) and one sensor i (corresponding to the update of the frequency of each sensor). These
programs are executed concurrently on each node. The execution of these scripts is illustrated in Figure 2
to give the reader an intuition of the semantics of CONCERTO-D. Some possible steps of the execution are
represented by a number representing the current configuration of the system (i.e., a snapshot). Using
these numbers, three pieces of information are given: (i) the marking, represented by the red dots on
marked places and transitions; (ii) the status of the behavior queue, and (iii) the coordination information
required between nodes introduced by decentralized execution of CONCERTO-D. In the following, we
describe the state of each configuration according to its number. We decompose each state, and we
highlight communication steps using the notation ∆.
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Figure 2: Control components of listeneri on node2 and sensori from node2+i. State example when
applying the reconfiguration plans of Listings 1 and 2.

0. Both listeneri and sensori services are running. Thus, the running places are marked. The be-
haviors to trigger the update are pushed in the queue, i.e., update and deploy for listeneri, and
pause for sensori. The behavior start for sensori is not pushed due to wait action of a behavior
of listeneri.

1. By triggering pause, sensori leaves the place running.

∆ listeneri needs to know if any component is using its ports before executing update. Then,
listeneri requests information on sensori’s use ports rcv_service and config_service, to know if
they are active or not.

2. sensori ends its previously fired transition.

∆ sensori answers listeneri about its use ports rcv_service and config_service, indicating that both
are inactive.

3. listeneri can begin the update behavior, therefore deactivating its provide ports. sensori removes
the pause behavior from its queue, as no more transitions in this behavior can be fired.

∆ The information sent in 2 is received by listeneri, allowing it to start its update.

4. listeneri finishes its transition related to its update behavior.

∆ sensori is now waiting the behavior identified by 2+i*2, and runs on listeneri, to be ended. Then it
sends a request to listeneri to know if the behavior 2+i*2 (update) is completed.

5. The behavior update of listeneri is retrieved from its queue.
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∆ sensori is informed that this behavior is completed, which allows it to continue its execution, i.e.,
to push and execute the transitions of the start behavior.

6. After pushing the behavior start and completing its first transition.

∆ sensori sends a request to determine whether the port config of listeneri is connected and active,
before entering in config_service group.

7. ∆ sensori receives information on listeneri’s port config. It is now active and connected.

8. sensori enters the place installed. listeneri begins the activation of its service.

9. listeneri activates its service and provides the port rcv.

∆ sensori sends a request asking whether the port rcv is active and connected before entering the
place configured.

10. listeneri removes the deploy behavior from its queue.

∆ sensori get the information that listeneri provides the port rcv.

11. sensori enters the place configured.

12. sensori reactivates its service and removes the start behavior from its queue.

The rest of this section gives some formal elements of the small-step semantics of CONCERTO-D.
Because of space reasons, we cannot fully detail all rules of the semantics. Instead, the section first
illustrates one execution rule at a reconfiguration program level, one execution rule at a component level,
and then details communications, i.e., the main formalization challenge in a decentralized model as
CONCERTO-D.

3.1 Execution and synchronization of reconfiguration actions

Let us first describe the semantics rules that govern the execution of actions in reconfiguration programs.
Recall that each node executes its own reconfiguration program, affecting components hosted on that
node. Actions to add and delete component instances are straightforward. Actions for connections and
disconnections of components are also fairly standard. They only modify the view that one node has of
the component’s topology. When components to (dis)connect are located on different nodes, both nodes
should eventually execute their own similar (dis)connection actions, however, the node-local views of
the topology do not have to be kept continuously synchronized. Finally, we turn to the pushB action,
which is specific to the CONCERTO-D model. The rule in Listing 3 gives the semantic of that action,
describing the modification of a node (as defined in Section 3.2). The action adds a behavior request to
the queue of behaviors of one component. The target component is indicated by its identifier, and the
behavior type is indicated, as well as an identifier. The latter is used for synchronization points, in order
to distinguish between multiple executions of the same behavior type.

The behavior requests determine the active behavior of a component instance at a given point, which
plays a role in the evolution of this component. We now describe the rules of this evolution. As described
in Section 2, the life cycles of components are modeled by places (milestones in the reconfiguration)
and transitions between places (reconfiguration actions). A marking on places and transitions indicates
the current state of the reconfiguration. When a place is marked, its outgoing transitions can be fired.
The place is then unmarked, and the fired transitions are marked. Conversely, when all the incoming
transitions toward a place are finished, those transitions are unmarked and the place is entered. This
model is well suited to represent concurrent execution, in particular, multiple transitions can be marked
simultaneously, corresponding to parallel execution of reconfiguration actions.
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Listing 3: The rule to execute the pushB action. The rule applies to a node (as defined in Section 3.2)
but rewrites a single component instance in that node.

1 crl [PushingBehavior] :
2 < −−− [...]
3 instances: (Id1 7→ { type: Ct, queue: Qb, marking: M }) , Isx,
4 −−− [...]
5 program: pushB(Id1, B, IdB) RPx,
6 −−− [...] >
7 =>
8 < −−− [...]
9 instances: ( Id1 7→ { type: Ct, queue: append(Qb,(IdB ; B)), marking: M } ), Isx,

10 −−− [...]
11 program: RPx,
12 −−− [...]
13 >
14 if (B in (Ct).behaviors) .

This evolution of markings is desribed by four rules: FiringTransitions, EndingTransition, Entering-
Place, and FinishingBehavior. For space reasons, we only detail one of these rules: Firing Transitions
given in Listing 4. It modifies the marking in one component on one node, namely unmarking a place P
and marking the outgoing transitions of Ts (only those transitions that belong to the active behavior of
the component). Note that this is a conditional rule, as indicated by the keyword crl and the boolean
conditions after the rule. The first condition merely ensures that there are transitions to fire. The second
condition relies on the predicate isSafeToFire to check dependencies towards other components, mod-
eled by ports, are not violated by the firing of the transitions. In particular, this predicate is true only if
the firing of the transitions does not lead to deactivating a provide port that is being used, i.e., connected
to an active use port. The rule to end a transition (not given) is somewhat similar but instead requires
that use ports attached to the reached place are connected to an active provide port. Thus, ports impose
inter-component synchronization conditions on the execution.

Listing 4: The rule to fire a transition. As before, this rule modifies a component instance in a node.

1 crl [FiringTransitions] :
2 < nodeInventory: Idsx,
3 instances: (Id1 7→ { type: Ct,
4 queue: (IdB ; b(TsB)) Qb,
5 marking: m((P, Ps),Ts,Tes)
6 }) , Isx,
7 connections: Csx,
8 −−− [...] >
9 =>

10 < nodeInventory: Idsx,
11 instances: (Id1 7→ { type: Ct,
12 queue: (IdB ; b(TsB)) Qb,
13 marking: m(Ps,union(Ts, getTransitionsofPlace(TsB,P) ),

Tes)
14 }), Isx ,
15 connections: Csx,
16 −−− [...] >
17 if ( getTransitionsofPlace(TsB,P) =/= empty and
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18 isSafeToFire( Idsx,
19 m(Ps,union(Ts, getTransitionsofPlace(TsB,P) ),Tes) ,
20 (Id1 7→ { type: Ct,
21 queue: (IdB ; b(TsB)) Qb,
22 marking: m(P, Ps,Ts,Tes)
23 } ,Isx),
24 eStatex,
25 getPConnectionsofCInst(Id1, Csx))) .
26 ) .

3.2 Communications

Firing or ending a transition on one component may require checking the activity status of a port on
another component. In previous work [6], the coordination was assumed to be carried out by a central
entity that kept track of the status of every port. Instead, CONCERTO-D is meant to represent a decentral-
ized process, it is therefore necessary to explicitly model communications between the nodes that host
components.

The following boolean information may be needed for synchronization, and can be called on remote
nodes: (1) the completion of a dcon action; (2) the completion of a behavior (i.e., wait action); (3) the
activity of a use or provide port.

When evaluating the status of one of the above queries (such as the status of a port in the predicate
safeToFire), we distinguish the case where the element of interest (dcon action, behavior, port etc.)
belongs to the local node, from the case where messages must be exchanged between nodes:

1 eq question(R1,Ids,RcvAns, Is,Cs,RP ) = if (isLocal(R1,Ids)) then
2 localQuestion(R1,Is,Cs,RP)
3 else externQuestion(R1,RcvAns) fi .

Essentially, each CONCERTO-D node maintains a localized perspective of its components and com-
municates with neighboring nodes (i.e., other CONCERTO-D controllers hosting connected control com-
ponents). In CONCERTO-D, an asynchronous message-based communication model, increasingly fa-
vored in distributed systems, manages the communication [21]. To achieve asynchronous communica-
tions each node is equipped with an incoming queue of messages. Messages must transit through this
queue before being effectively received (this assumes that the order of messages is preserved).

A message can either be a Question or an Answer. The former is aimed at a specified component
instance and contains one of several possible queries while an Answer gives the boolean value corre-
sponding to a question. It can take the values true, false.

Listing 5: Constructors for Question, Answer and Message

1 sorts Query .
2 op isActive(_) : Port -> Query [ctor] .
3 op isRefusing(_) : Port -> Query [ctor] .
4 op isConnected(_) : Connection -> Query [ctor] .
5 op isCompleted(_) : Id -> Query [ctor] .
6 op onDisconnect(_) : Connection -> Query [ctor] .
7 op [ dst: _ , query: _ ] : Id Query -> Question [ctor] .
8 op [ question: _, value: _ ] : Question Bool -> Answer [ctor] .
9 op mkMsg : Question -> Message [ctor] .

10 op mkMsg : Answer -> Message [ctor] .
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For example, the question [ dst: listener1, query: isActive(Rcv)] can be sent by node3
(which hosts sensor1) to node2 (which hosts listener1) to check whether the port Rcv of listener1
is active. This corresponds to the state 9 in Figure 2. The answer [ req: [ dst: listener1, query
: isActive(Rcv)], value: true ] is the answer which will be returned at state (10) to indicate that
the port is indeed active. For more details about the remaining queries, the reader can refer to [6].

A node is specified by the set of identifiers of all the component instances involved in the recon-
figuration programs, a mapping (called an inventory) that associates these identifiers to their associated
nodes, the connections between local component instances and external instances, and the local recon-
figuration program to be executed on the node. A node is additionally specified by five parameters used
for communication: (1) a local vision of the state of external components externState; (2) a queue of
pending questions waiting for an answer pendingQuestions; (3) a queue of outgoing questions asked to
other nodes outgoingQuestions; (4) a queue of incoming messages incomingMsgs including incom-
ing questions asked by other nodes and answers received from other nodes to previously sent questions;
and finally (5) a history of previously sent questions (to avoid redundant messages for already pending
requests). Received answers are stored in externState as a mapping that associates requests to the
value of the answer. This represents the local node’s vision of the status of other components. This
information is updated each time external information is needed in a semantics rule.

Listing 6: Local configuration

1 op < nodeInventory: _,
2 instances: _,
3 connections: _,
4 program: _,
5 externState: _,
6 pendingQuestions: _,
7 outgoingQuestions: _,
8 history: _,
9 incomingMsgs: _

10 > :
11 Ids Instances Connections Program Map{Question, Bool} List{Question} List{

Question} Set{Question} List{Message}
12 -> LocalConfiguration

For example, the description of the local configuration of node3 in state 0 is as follows:

1 eq ConfNode3 =
2 < nodeInventory: sensor1,
3 instances: { sensor1 7→ instanceS1 },
4 connections: { connectionSL1, connectionSL2 },
5 program: programNode3,
6 externState: eStateNode3,
7 pendingQuestions: nil,
8 outgoingQuestions: nil,
9 history: empty,

10 incomingMsgs: nil >

where instanceS1, connectionSL1, connectionSL2 and programNode3 are the elements previ-
ously described for our use case in Sections 2 and 3.2. sensor1 is the identifier of instanceS1 and
eStateNode3 is the external state (i.e., mapping of questions and received answers sent by node3).
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Following the deployment steps that preceded the reconfiguration state 0, eStateNode3 of node3 is
described as follows:

1 eq eStateNode3 =
2 [ dst: listener1, query: isRefusing(Rcv) ] 7→ false ,
3 [ dst: listener1, query: isConnected(connectionSL1) ] 7→ true ,
4 [ dst: listener1, query: isRefusing(Config) ] 7→ false ,
5 [ dst: listener1, query: isConnected(connectionSL2) ] 7→ true .

The rest of this section gives the execution semantics of communication in CONCERTO-D using
Maude rewrite rules, which operate on a system of local configurations of nodes. The associated rules
for communication are presented in listings 7, 8, 9 and 10. The rules consider two nodes x and y.

First, Listing 7 describes the rule [SendQuestion] sending of a request [ dst: Dst, query: Q
] from node x to node y. The destination node y is determined since the identifier of the instance of

the request Dst appears in the inventory of node y. Sending the request implies adding to the incoming
messages of y the message mkMsg([ dst: Dst, query: Q ]). The sent request will also be inserted
in the history Hx of node x to avoid the request being sent multiple times while waiting for an answer.

Listing 7: The rule to send a question, that rewrites two nodes (unaffected variables are omitted).

1 rl [SendQuestion] :
2 < −−− [...]
3 outgoingQuestions: [ dst: Dst, query: QY ] OutQx,
4 history: Hx,
5 −−− [...]
6 > ,
7 < nodeInventory: (Dst, Idsy),
8 −−−[...]
9 incomingMsgs: iMsgsy >

10 =>
11 < −−− [...]
12 outgoingQuestions: OutQx,
13 history: ([ dst: Dst, query: Q ], Hx),
14 −−− [...]
15 > ,
16 < nodeInventory: (Dst, Ids),
17 −−− [...]
18 incomingMsgs: append(iMsgsy, mkMsg([ dst: Dst, query: QY ])) >

Second, Listing 8 describes the sending of an answer from node x to node y concerning a question Q
previously sent by y. The destination node y is chosen when the concerned request Q is in its history of
sent requests, and has not yet received in an answer to this request (not occurs(mkMsg(Q), iMsgsy)).
The value of the answer is computed on node x by the function localQuestion and sent to node y by
placing the answer in the incoming messages of node y.

It is important to maintain the consistency of shared information, so if a node x sends information that
could allow an external component y to change the status of one of its ports p, the previously recorded
information about p on x is deleted. For example, when a component on node y asks x if one of its
provide port p is active, it means that the associated use port u on y may be activated soon after the
answer is sent by x. Consequently, the node x that sends the answer on p will simultaneously reset the
information in its external state regarding u on y (of course, it should not yet assume that the use port is
active). In Listing 8, this update is carried out by the function resetState.
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Listing 8: The (conditional) rule to send an answer

1 crl [SendAnswer] :
2 < −−− [...]
3 instances: Isx,
4 connections: Csx,
5 program: RPx,
6 externState: eStatex,
7 pendingQuestions: Q pendingQx,
8 −−− [...]
9 > ,

10 < −−− [...]
11 history: (Q, Hy),
12 incomingMsgs: iMsgsy >
13 =>
14 < −−− [...]
15 instances: Isx,
16 connections: Csx,
17 program: RPx,
18 externState:resetState(eStatex,getIdsForReset(Csx,Q,localQuestion(Q,Isx,Csx,RPx))),
19 pendingQuestions: pendingQx,
20 −−− [...]
21 > ,
22 < −−− [...]
23 history: Hy,
24 incomingMsgs: append(iMsgsy, mkMsg([ question: Q,
25 value: localQuestion(Q,Isx,Csx,RPx) ]))
26 >
27 if (not occurs(mkMsg(Q), iMsgsy)) .

Third, Listing 9 describes the rule for receiving a question on a component local to x. This is
started when the identifier Dst of the request [dst: Dst, query: Q] is in the set of identifiers of
the components of node x. The request is evaluated and the answer is placed in the queue of pending
questions.

Listing 9: The rule for receiving a question

1 rl [ReceiveQuestion] :
2 < nodeInventory: (Dst, Idsx),
3 −−− [...]
4 pendingQuestions: pendingQx,
5 −−− [...]
6 incomingMsgs: mkMsg([dst: Dst, query: QY]) iMsgsx >
7 =>
8 < nodeInventory: (Dst, Ids),
9 −−− [...]

10 pendingQuestions: append(pendingQx,[ dst: Dst, query: QY ]),
11 incomingMsgs: iMsgsx >

Finally, Listing 10 describes the rule for receiving an answer to a question Q previously sent by node
x (as indicated by its presence in the history). The answered value val is recorded (insert(R, val
, RcvA)) and it replaces previous information about the result of request Q, if any. The request Q is
removed from the history of node x, so that a similar request may be sent again in the future.
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Listing 10: The rule for receiving an answer

1 rl [ReceiveAnswer] :
2 < −−− [...]
3 externState: eStatex,
4 −−− [...]
5 history: (Q,Hx),
6 incomingMsgs: mkMsg([ question: Q, value: Val ]) iMsgsx >
7 =>
8 < −−− [...]
9 externState: insert(Q,Val,eStatex),

10 −−− [...]
11 history: Hx,
12 incomingMsgs: iMsgsx >

Example. To illustrate the communication protocol of the above semantics rules, a subpart of the
example of Figure 2 is used with one listener and one sensor. In step 4, the sensor sends a question
to the listener regarding the completion of its behavior idb4. The question is created following the
wait(listener, idb4) action in the local reconfiguration program of the sensor, and is placed in
outgoingQuestion. The question is [dst: listener1, query: isCompleted(idb4)]. The fol-
lowing communication rules are applied:

1. [SendQuestion] is applied: the question in outgoingQuestion on sensor is popped and placed
into history of sensor. The incomingMsgs of listener appends the question received from
sensor.

2. [ReceiveQuestion] is applied: The node listener appends the incoming question to its list
pendingQuestions. The question is removed from incomingMsgs.

3. [SendAnswer] is applied: The question in pendingQuestions on listener is popped. The an-
swer is created and pushed to the incomingMsgs of sensor. The answer message to the question is
[question: [dst: listener1, query: isCompleted(idb4)], value: true]. The orig-
inal question is removes from history on sensor.

4. [ReceiveAnswer] is applied: The answer received on sensor in incomingMsgs is removed and
inserted (added or updated) to the externState of sensor as a mapping [dst: listener,
query: isCompleted(idb4)] 7→ true].

Once completed a pushed behavior cannot be executed again as being uniquely identified. For this reason,
no consistency issue can happen in this small example. The resetState of the rule SendAnswer has no
consequences on externState in this case.

4 Related work

CONCERTO and CONCERTO-D can be considered as component models, such as defined in Component-
Based Software Engineering (CBSE). As explained in [6, 9] CONCERTO, and by extension CONCERTO-
D, differ from usual component models by modeling the life cycle of components instead of modeling
the functional code of components. For this reason, both CONCERTO and CONCERTO-D are more com-
parable to DevOps approaches. Only one other component model can be compared to CONCERTO:
Aeolus [10]. However, Aeolus is more limited than CONCERTO in terms of parallelism and concurrency.
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As for CONCERTO, and unlike CONCERTO-D, Aeolus is a centralized model, and it has been formalized
manually.

Regarding DevOps approaches for deployments, a few contributions have studied a decentralized
approach. In [16, 26] each component of the application expresses its dependencies with the other com-
ponents in a central plan, distributed to the corresponding nodes, deploying their part of the application.
Deployment executions are then coordinated between the nodes according to their dependencies. Here,
the execution is decentralized as in CONCERTO-D. In [25], an extension of the DevOps tool Pulumi is
presented to handle both the computation and execution of deployment and update programs in a de-
centralized manner. However, the three approaches above, and almost all DevOps tools, lack formal
specifications: their language is defined by a unique implementation and informal documentation.

To our knowledge, there are only two DevOps contributions that offer formal semantics of their
system configuration languages: SMARTFROG [2] a tool no longer maintained, and µPUPPET [14] a
subset of PUPPET. The semantics of SMARTFROG is a denotational semantics of a compiler for a core
SMARTFROG fragment. From the high-level language SF, which handles features such as inheritance,
composition, references, etc., the compilation process produces a store, basically a tree of attribute-value
pairs. These trees are also the abstractions for system states in SMARTFROG’s semantics. The authors
wrote three implementations (in Scala, Haskell, and OCaml) of the compiler guided by the semantics
but not proved correct w.r.t. to the formal semantics (which is not mechanized). These implementations
were randomly tested and a few implementation errors were found. They were also tested against the
production compiler: it allowed them to find both a misunderstanding of the semantics of SMARTFROG

and bugs in the production compiler. The semantics of µPUPPET is a small-step operational semantics.
An implementation of a µPUPPET compiler exists, guided by the semantics but not proved correct w.r.t.
the formal semantics, which is also not mechanized. The output of the compiler is a catalog, i.e., a
structure close to the stores’ output by SMARTFROG’s compiler. A catalog is also an abstraction for a
system state. To help debug µPUPPET manifests, Fu [13] also proposed an analysis of provenance [7]
based on the µPUPPET operational semantics. In both cases, the formal semantics is not an executable
artifact as is our proposal.

Khebbeb et al. also use Maude to formalize adaptation in the Cloud [18] and at the edge [17].
The motivation and approach are however very different from our work. There is no reconfiguration
language: the goal is to automatically adapt resources depending on the load of the Cloud system. On
the one hand, this work considers the provisioning and de-provisioning of virtual machines, an aspect
we do not consider. On the other hand, their concept of service is very simplistic: a service is something
that processes requests (and only the number of requests is formalized) and there are no connections
between services. Their rewrite rules implement pre-defined elasticity strategies. While they perform
model-checking on a small example (3 services, 1 VM, and 2 Fog nodes) [17], they neither provide any
information about the number of states, nor the time required for the verification. In its complexity, our
proposal is closer to work that models APIs for e.g., [27]. As Yu et al., to analyze interesting enough
case studies, we will need to optimize the model-checking by implementing partial order reduction [12].

5 Conclusion and Future Work

In this paper, we proposed a formalization in Maude of the decentralized reconfiguration language
CONCERTO-D, an extension of the centralized reconfiguration language CONCERTO [6]. In CONCERTO-
D, the assembly of components is distributed among a set of nodes. Each node is responsible for a local
reconfiguration program that may require some coordination with the nodes that host connected compo-
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nent instances. CONCERTO-D automatically manages the necessary communications between nodes via
asynchronous communications, which involve nodes communicating by exchanging messages through
buffers. The advantage of having a formal semantics with Maude is that it is executable and hence we
can check by running examples that the semantics we designed behaves as we expect it to do.

This is however a first step. We ambition to verify properties of specific assemblies and their recon-
figuration programs as well as to verify properties of the semantics itself.

To verify specific assemblies and their programs, Maude offers on-the-fly model-checking of LTL
formulas. Preliminary experiments show that in its current form the semantics does not allows to scale
up to the model-checking of realistic applications. We will first explore the application of partial order
reduction techniques [12] to limit the state-space explosion problem. Another way to avoid such an
explosion is to use symbolic model-checking techniques in particular verification by over-approximation
of the set of descendants [15, 3]. In these approaches, the goal is to check that a set of bad states does
not intersect the over-approximations of the sets of descendants. There are however constraints on how
the (approximations of) sets of terms are described (for e.g. regular tree automata) and constraints on the
rewriting rules describing the dynamic of the system.

Verifying properties of the CONCERTO-D model itself may require the use of interactive theo-
rem proving (ITP). There are ongoing efforts to develop a dedicated interactive theorem prover for
Maude [11] as well as to translate Maude specifications [24] into existing ITP specification languages.
The main properties we plan to prove interactively are that the semantics preserves well-formed instances
and well-formed systems, as well as that the consistency of the communicated information between nodes
is ensured.

Finally, thanks to CONCERTO-D, CONCERTO could be transformed into a choreographic language
(as defined in [1]). In a choreographic approach CONCERTO would be the choreography language. A
compilation process would then automatically generate the CONCERTO-D programs (i.e., local projec-
tions) on the nodes, and guarantee that required communications between nodes will be performed when
required. The formalization may be used to prove that the set of CONCERTO-D programs yielded by that
process has a behavior that corresponds to the behavior original centralized CONCERTO program.
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