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ABSTRACT

SyDPaCC (Systematic Development of programs for Parallel and
Cloud Computing) is a framework for the Coq interactive theorem
prover. It allows to systematically develop correct parallel programs
from specifications via verified and automated program transfor-
mations. The obtained programs are scalable, i.e. able to run on
numerous processors. SyDPaCC produces programs written in the
multi-paradigm and functional programming language OCaml with
calls to the BSML (Bulk Synchronous parallel ML) parallel program-
ming library. In this paper we present ongoing work towards an
extension of SyDPaCC to be able to produce Scala programs using
Apache Spark for parallel processing.

CCS CONCEPTS

•Computingmethodologies→MapReduce algorithms; • Soft-
ware and its engineering→ Software verification.
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1 INTRODUCTION

For complex software such as operating systems or compilers, there
exist verified implementations [22, 25, 43] using interactive theorem
provers, in these examples Isabelle/HOL [35], Coq [4, 40, 45] and
HOL Light respectively. Although it may not be trivial to understand
very precisely what are the guarantees provided by such formal
developments [34], they indeed offer code without bugs [47].

In the domain of scalable parallel computing (from a dozen of
cores to potentially a dozen of thousands or more), SyDPaCC [31,
32] is a framework for Coq that supports the systematic develop-
ment of correct parallel programs from specifications via verified
and automated program transformations. Currently, SyDPaCC pro-
vides transformations based on list homomorphism theorems [14]
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and the diffusion theorem [20] which can be seen as an extension
of the first homomorphism theorem to functions taking an accumu-
lating parameter in addition to the list parameter. SyDPaCC also
offers proofs of correspondences between sequential higher-order
functions and algorithmic skeletons [7] that can be considered as
higher-order functions implemented in parallel. These skeletons
are implemented using the parallel primitives of BSML [29, 44] a
library for scalable parallel programming with the multi-paradigm
and functional programming language OCaml [26]. From its de-
sign, SyDPaCC was supposed to offer several backends, not only
BSML+OCaml. The contribution of this paper is ongoing work to
extend SyDPaCC to be able to produce Scala [36] programs using
Apache Spark [2] for parallel processing.

The rest of the paper is organized as follows. Section 2 gives an
overview of the features of Coq, BSML and Spark. Section 3 presents
the principles of the SyDPaCC approach. Section 4 is devoted to
the extension of SyDPaCC to deal with Scala+Spark programs
in the context of list homomorphisms. Section 5 discusses a path
towards supporting transformations based on the diffusion theorem.
We compare our proposal to the state-of-the-art in Section 6. We
conclude and identify future research directions in Section 7.

2 BACKGROUND

2.1 The Coq Proof Assistant

Coq [4, 40, 45] is an interactive theorem prover. It can be seen as a
functional programming language, similar in syntax to languages
such as Standard ML, F# or OCaml. It is based on the Curry-Howard
correspondance [18] where types correspond to mathematical state-
ments and programs correspond to proofs. All functions should be
terminating and total, otherwise non-terminating or incomplete
proofs could exist. The type system of Coq is muchmore expresssive
than the type systems of the programming languages cited above.
While directly writing proofs as functional programs is possible, in
practice a language of so-called tactics is used to build proof terms.

Figure 1 presents in lines 1–7 the definition of a tail recursive
version of map, named map' , that uses the auxiliary recursive func-
tion map_aux and the pre-defined List. rev' function that reverses
a list (rev' is a tail recursive function). Both functions are poly-
morphic with type arguments A and B which are implicit in the
definition of the functions but explicit in the statement of the lem-
mas (line 9 and 13). Note that the type of the arguments may be
inferred by Coq. In the case of the second lemma (line 13), the only
type annotation is the type of f: this annotation is necessary for
Coq to infer the types of the other arguments. Lines 14–20 are a
proofs script written with tactics. When the system reaches the Qed
command it type-checks the obtained proof term with respect to
the statement of the lemma (which is a type).
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1 Fixpoint map_aux `(f: A→B)(l: list A)( acc: list B): list B :=
2 match l with
3 | [] ⇒acc

4 | head:: tail ⇒map_aux f tail (( f head):: acc)
5 end.
6

7 Definition map' `(f: A→B) l := List. rev' ( map_aux f l []).
8

9 Lemma map_aux_acc: ∀ ( A B: Type) ( f: A→B) l acc,
10 map_aux f l acc = ( map_aux f l []) ++ acc.
11 Proof. (* omitted *) Qed.
12

13 Lemma equiv: ∀ A B ( f: A→B) l, map f l = map' f l .
14 Proof.
15 intros A B f; induction l as [ | head tail IH ].
16 − trivial.
17 − unfold map', rev' in ∗. simpl.
18 rewrite map_aux_acc, ←rev_alt, rev_app_distr.
19 simpl. f_equal. now rewrite IH, rev_alt.
20 Qed.

Figure 1: A Coq example

In addition to the features briefly presented here, SyDPaCC relies
on Coq’s module system [24] and type-classes. Basically, a module
is an encapsulation mechanism just used to put together definitions
and lemmas, theorems, etc.. Type modules can be thought of as
module interfaces. Modules can be parametric and take modules
as arguments. In this case the argument should be given a module
type. Coq’s module system is similar to OCaml’s module system.

Type-classes are essentially definitions of record types and val-
ues of these record types are called instances. The difference to
record types (which also exist in Coq) is that instances are stored
in a database. Instances may depend on other instances, meaning
one needs to have the argument instances in order to be able to
build an instance that depends on them. This can be thought of as
Prolog rules and instances without arguments can be thought of as
Prolog facts. A Prolog-like resolution mechanism indeed exists and
computes instances when one or several arguments whose type are
type-classes are declared implicit. When such a function is called,
Coq tries to build the missing implicit arguments via Prolog-like
resolution. Unlike the type-classes of Haskell, there may be several
possible available instances in the context where one is needed. For
rules, a notion of priority is used and can be modified by the user,
for facts the last defined instance is chosen.

Coq provides an extraction mechanism [27]. Coq extraction con-
verts verified Coq definitions into compilable code in functional
programming languages like OCaml, Haskell, and Scheme. It in-
volves translating to a mini-ML language, which is then converted
to the desired programming language. Non-computational parts are
removed during extraction, leaving only the essential components
in the intermediate representation.

2.2 Apache Spark

Apache Spark [42] is a framework for data analytics that focuses
on querying or manipulating extensive amounts of data. The pro-
gramming interface of Spark reflects a functional/higher-order pro-
gramming model. This characteristic facilitates a direct and reliable
extraction of parallel code from functional Coq specifications.

1 // Create a SparkSession

2 val sc = SparkSession. builder. appName( "Example")
3 . getOrCreate(). sparkContext

4 val numbers = sc. parallelize( List(1, 2, 3, 4, 5))
5 // Use map and fold to calculate the sum of the numbers

6 val sumResult = numbers. map( _ ∗ 2). fold(0)( _ + _)
7 // Use map and count to count the number of even numbers

8 val evenCount = numbers. map( _ % 2). count()
9 spark. stop()

Figure 2: A Spark Example

Spark advocates a data-parallel approach, which involves utiliz-
ing a dedicated distributed data structure known as RDDs (Resilient
Distributed Datasets) that are partitioned by the master node. These
partitions are distributed among the worker nodes along with tasks
that need to be executed on RDDs. In Spark, a task refers to a series
of operations carried out on an RDD. A Spark job consists of a stage,
grouping a set of tasks, to operate for a job.

The operations are categorized into two categories of functions.
First, transformations are applied to RDDs to create a new RDD
(e.g., map, filter, flatMap). Transformations are lazy, meaning
they do not execute immediately but instead create a lineage of
transformations to be executed later. On the other hand, actions
in Spark are operations that trigger the execution of the trans-
formations and return a result or perform a specific action (e.g.,
collect, reduce, fold). Contrary to transformations, actions are
eager, meaning they cause the execution of the transformations
and return a value. This mechanism allows the optimization of a
Spark stage by reducing computing phases and communications.
Due to Spark’s utilization of functions that implement functional
computational patterns, programming in Spark can be considered
as a skeletal approach.

Figure 2 illustrates the use of Spark high-order functions. In this
example, we initialize a SparkSession, and create an RDD called
numbers with a list of numbers (lines 1–4). Two examples for its
use are shown. First, we use map to double each number, and fold
to calculate the sum of the modified numbers (line 6). The lambda
function inside fold adds the current value with an accumulator.
Second, we use map to transform each number into either 0 or 1
based on whether it’s even or odd. Then, we use count to count
the number of even numbers in the RDD (line 8). Finally, we stop
the SparkSession to release the resources (line 9). In this work, we
target Scala as the language to express Spark programs. The same
approach could be done using Python, or Java.

2.3 Bulk Synchronous Parallel ML

BSML [29] is a library for the OCaml language [26] that supports
Bulk Synchronous Parallelism [46]. BSML is a pure functional li-
brary. Currently, BSML is implemented on top of MPI and can be
run on large HPC systems but also more modest shared memory
machines. It provides a polymorphic non-nestable data structure
called parallel vectors and a set of 4 functions to manipulate them:
mkpar, proj, apply, put. bsp_p is an integer constant containing
the number of processors of the parallel machine. We denote this
value with 𝑝 . If ⟨𝑣0, . . . , 𝑣𝑝−1⟩ denotes a parallel vector of size 𝑝
(the only possible size for a parallel vector: one value per processor),
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mkpar : (int→ 𝛼) → 𝛼 par
mkpar 𝑓 = ⟨𝑓 0, . . . , 𝑓 (𝑝 − 1)⟩
proj : 𝛼 par→ (int→ 𝛼)
proj ⟨𝑣0, . . . , 𝑣𝑝−1⟩ = function 0→ 𝑣0 | . . . | 𝑝 − 1→ 𝑣𝑝−1
apply : (𝛼 → 𝛽)par→ 𝛼 par→ 𝛽 par
apply ⟨𝑓0, . . . , 𝑓𝑝−1⟩ ⟨𝑣0, . . . , 𝑣𝑝−1⟩ = ⟨𝑓0 𝑣0, . . . , 𝑓𝑝−1 𝑣𝑝−1⟩
put : (int→ 𝛼)par→ (int→ 𝛼)par
put ⟨tosend0, . . . , tosend𝑝−1⟩ = ⟨rcvd0, . . . , rcvd𝑝−1⟩
where ∀ src, dst . 0 ≤ src, dst < 𝑝 ⇒ rcvd

dst
src = tosendsrc dst

Figure 3: BSML primitives

type 𝛼 dlist = 𝛼 list Bsml. par

let map ( f: 𝛼 →𝛽) ( l: 𝛼 dlist): 𝛽 dlist =

Bsml. apply ( Bsml. mkpar( fun _→ (List. map f))) l

let processors : int list =

Array. to_list ( Array. init Bsml. bsp_p ( fun i →i))

let fold ( op: 𝛼 →𝛼 →𝛼 ) ( e: 𝛼 ) ( l: 𝛼 dlist) : 𝛼 =

let seq_fold = List. fold_left op e in
let local_folds = Bsml. apply ( Bsml. mkpar( fun _→seq_fold)) l in
let partial_folds = Bsml. proj local_folds in
seq_fold ( List. map partial_folds processors)

let count ( l: 𝛼 dlist) : int = fold ( + ) 0 ( map ( fun _ →1) l)

Figure 4: A BSML example

the semantics of the four BSML primitives can be defined as shown
in Figure 3.

A BSP program is a sequence of super-steps, each divided in
three phases: a computation phase where processors compute in
parallel with local data only, a data exchange phase and a global syn-
chronization phase. mkpar and apply need only the computation
phase to evaluate. mkpar builds a parallel vector from a function.
apply applies a vector of functions to a vector of values. proj and
put need data exchanges hence also a global synchronization. For
both proj and put, some OCaml values are considered as empty
messages thus these primitives are not necessarily communication
patterns where all processors communicate with all other proces-
sors. proj can be seen as the dual of mkpar but the result function
is only defined on [0, 𝑝 − 1]. In a BSP super-step, the messages to
be sent can be seen as a 𝑝 × 𝑝 matrix where the cell 𝑖, 𝑗 contains
the message to be sent from 𝑖 to 𝑗 . put transposes this matrix and
in the result, the cell 𝑗, 𝑖 contains the message received by 𝑗 from 𝑖 .
The matrices are represented as parallel vector of functions.

BSML is well suited [30] to implement algorithmic skeletons [7]
that are higher-order functions implemented in parallel and oper-
ating on distributed data structures. Spark and its RDD can also
be seen as a set of algorithmic skeletons. For example, Figure 4
implements with BSML a data-structure of distributed lists and
map and fold skeletons on this structure1.

1The non-pretty printed version of this example can be run either using BSML distribu-
tion https://bsml-lang.github.io or BSML online: http://tesson.julien.free.fr/try-bsml/.

3 THE SYDPACC APPROACH

SyDPaCC is a set of libraries for the Coq interactive theorem prover.
The usual scenario for using SyDPaCC is to write a specification as
an inefficient, but easy to understand, sequential functional program
and to prove some rather simple properties on this program. The
framework can first optimize the sequential program and second
automatically parallelize the more efficient sequential program.

The front-end is responsible for optimizing specifications based
on transformation theorems. For example SyDPaCC provides a
variant of the third homomorphism theorem [14] that states that
a function that is both leftwards and rightwards (i.e. that can be
both be written using the higher-order functions List. fold_left
and List. fold_right) and that has a weak form of inverse is a
list homomorphism. The first homomorphism theorem states that
a list homomorphism can be implemented as a composition of map
and reduce. The other transformation theorem available for lists
is the diffusion theorem [20].

The back-end is responsible for the automated parallelization.
While the mechanism at play was designed with parallelization in
mind, it is actually more general and handles any program trans-
formation based on a change of data-structure to represent items
of interest. SyDPaCC provides two notions of correspondence:

• A type Torig corresponds to a type Tnew if there exists a surjec-
tive function join: Tnew→Torig. The surjectivity condition
means that any original value can be represented with the
new type. T1 ⊳ T2 denotes a correspondence from T1 to T2.
• A function f: T1orig→T2orig corresponds to another function
fnew: T1new→T2new if T1orig⊳ T

1
new and T2orig⊳ T

2
new and

∀(𝑥 : T1new), join2 (fnew 𝑥) = forig (join1 𝑥).
We established that the composition 𝑓 ◦ 𝑔 of two functions 𝑓 , 𝑔

in correspondence with two other functions 𝑓𝑛 , 𝑔𝑛 is in correspon-
dence with 𝑓𝑛 ◦𝑔𝑛 . Other similar results with type compositions (for
example pairs of types) and type correspondence, but also other
function compositions (such as pairing and tupling) are part of
SyDPaCC. Type and function correspondences are expressed as
type-classes, and the compositions as parametrized instances.

Moreover, BSML primitives are formalized in Coq [44]. We have
instances for the correspondence of Coq versions of 𝛼 list with
𝛼 dlist, and List.map with map of Figure 4.

With all these type-classes and instances, one can write:

Definition parallel `(f: A→B)
`{ ACorr : TypeCorr A Ap join_A} `{ BCorr : TypeCorr B Bp join_B}
`{ fCorr : @FunCorr A Ap join_A ACorr B Bp join_B BCorr f fp} :

Ap →Bp := fp.

At first sight, 𝑝𝑎𝑟𝑎𝑙𝑙𝑒𝑙 simply returns a sub-part of one of its argu-
ments, but note that all the formal parameters of parallel that
are enclosed by curly brackets are implicit arguments. For a specifi-
cation fspec, one calls parallel fspec. The type-class mechanism
of Coq tries to build the missing arguments using a Prolog-like
resolution. If there are type correspondences and function corre-
spondences (which may be indirect as we have a parametrized
instance for function composition) then fp is automatically built,
hence fspec is automatically optimized and parallelized.

Let us consider, as a simple example of development, a gener-
alization of the evenCount example of Figure 2 where we count

https://bsml-lang.github.io
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the number of elements of a list that satisfy a given predicate. A
possible specification for this problem follows:
Definition spec ( p: A→bool)(l:list A) := List. length ( List. filter p l).

where List. filter p l filters out the elements of list l that do
not satisfy predicate p.

If we can prove that spec is rightwards, leftwards and has a right
weak inverse, then it is a homomorphism, and it can be implemented
as a composition of map and reduce.

Indeed spec can be written as a call to List. fold_left and a
call to List. fold_right with the following binary operators:
Definition opl p ( a: A)( count: nat) := count + if ( p a) then 1 else 0.
Definition opr p ( count: nat)( a: A) := count + if ( p a) then 1 else 0.

The proofs of instances stating that spec is leftwards and rightwards
are very short (4 and 6 lines). It is quite easy to find a right inverse
for spec with the additional condition that there exists at least one
value, named default, that satisfies predicate p:
Definition inv ( n: nat): list A := List. map ( fun _⇒default) (seq 0 n).

With the BSML back-end, obtaining the sequential optimization
of spec then its parallelization is simply written:
Definition par_count ( p: A→bool) : par( list A) →nat :=

Eval sydpacc in parallel( spec p).

where Eval sydpacc forces the immediate application of parallel
hence producing the optimized parallel program. This kind of pro-
gram is developed inside a parametrized module that takes as ar-
gument a module of type BSML, i.e. the module type that formal-
izes the BSML primitives depicted in Figure 3. The OCaml code
extracted from Coq is also a parametrized module. To be able to
execute the par_count BSML function, the user needs to apply
the parametrized module to a module implementing in parallel

the primitives of BSML. The BSML library for OCaml provides al-
most such a module: in the Coq formalization, processor identifiers
are represented by values of type N, unbounded natural numbers,
while in the OCaml BSML module they are represented by type int.
Therefore SyDPaCC provides a OCaml wrapper module around the
BSML OCaml BSML module and it is this wrapper that is passed as
argument to the application parametrized module.

The Spark back-end is mostly the same, the difference being that
the distributed data-structure is not par( list A) but RDD A:
Definition par_count ( p: A→bool) : RDD A → nat :=
Eval sydpacc in parallel( spec p).

4 SYDPACC FOR SPARK: HOMOMORPHISMS

A Spark back-end for SyDPaCC enables the efficient parallelization
of optimized sequential programs obtained with SyDPaCC on a
Spark cluster. Spark’s distributed computing capabilities provide
scalability and fault tolerance, resulting in potentially enhanced
performance and speed compared to the original sequential version.
Just like the BSML back-end, for a Spark back-end we need:

(1) a formalization of Spark data structure and primitives,
(2) a set of type and function correspondences to relate Coq lists

and functions to Spark data structure and primitives,
(3) if necessary, a Scala and Spark library to alleviate any mis-

match between the formalization and the implementation,
(4) an extraction mechanism for Scala code.

We consider each of these requirements in this section.

1 Module Type SPARK.
2

3 Parameter RDD: Type →Type.
4 Parameter size : ∀ { A: Type}, RDD A →nat.
5 Parameter get: ∀ { A: Type}, RDD A →nat →A.
6

7 Definition to_list { A: Type} ( d: RDD A) : list A :=
8 List. map ( get d) ( indexes ( size d)).
9

10 Section Primitives.
11 Variable ( A: Type).
12

13 Parameter parallelize: list A →RDD A.
14 Axiom parallelize_length:
15 ∀ ( l: list A), size( parallelize l) = length l.
16 Axiom parallelize_spec:
17 ∀ ( l: list A) ( i: { n: nat | n < length l}),
18 get ( parallelize l) ( proj1_sig i) = Sig. nth l i.
19

20 Parameter map: ∀ { B: Type} ( f: A→B)(d: RDD A), RDD B.
21 Axiom map_length: ∀ { B: Type}( f: A→B)(d:RDD A),
22 size( map f d) = size d.
23 Axiom map_spec: ∀ { B: Type}( f: A→B)(d:RDD A),
24 ∀ i, i < ( size d) →get ( map f d) i = f( get d i).
25

26 Parameter reduce: ∀ `(op: A→A→A)`{Monoid A op e}( d: RDD A), A.
27 Axiom reduce_spec: ∀`(op: A→A→A) `{Monoid A op e}( d: RDD A),
28 reduce op d = Bmf. reduce op ( to_list d).
29

30 End Primitives.
31

32 End SPARK

Figure 5: The Coq formalization of RDDs & primitives

A Coq formalization of a subset of Spark. Figure 5 presents a
specification of distributed computation on Spark data structures.
Line 3 introduces the RDD type, which stands for Spark RDDs data.
The RDD type takes a type parameter, which represents the type
of elements stored in the dataset. It is possible to obtain the size
and access an element of a RDD with get in the specifications. Of
course, any code that is supposed to be extracted does not use these
two functions.

Lines 13–18 introduces the parallelize Spark operation as a
function that takes a list A and returns a RDD A. parallelize
aims at converting a regular list into an RDD for parallel processing.
The parallelize_spec axiom specifies its behavior.

Lines 20–24 specify the behavior of map on RDDs. Basically, for
each element in the RDD it applies the function to the element.
Similarly, Lines 26–28 give a specification for the reduce operation.
The presented axiom reduce_spec states that reducing an input
RDD d with an associative operator op, forming a Monoid with its
identity element e, should be equal to reducing (with the SyDPaCC
defined Bmf. reduce function) the list obtained by converting d into
a regular list using the to_list function.

Type and functions correspondences. We established the type cor-
respondence list A ⊳ RDD A and that the Spark map and Spark
reduce presented in Figure 5 respectively correspond to List. map
and Bmf. reduce. With these correspondences the sequential opti-
mization and parallelization is available for Apache Spark.



Towards Verified Scalable Parallel Computing with Coq & Spark FTfJP ’23, July 18, 2023, Seattle, WA, USA

1 import scala. of. coq. lang. _
2 // ...

3 object SparkCount {
4 def par_count[A]( p: A => Boolean): RDD[A => Nat] =
5 compose( reduce( plus)(0))
6 ( map( a => if ( p( a)) 1 else 0))
7 }

Figure 6: Hand-written extraction of the count example

A Scala library for Spark in SyDPaCC. In Apache Spark, the defini-
tion of map and fold operations on RDDs do not need an additional
implementation. To perform transformations and aggregations, the
core of Spark natively provides corresponding methods. However
methods are not functions. Therefore, we provide a wrapper library
that exposes these methods as higher-order functions on RDDs.

Limits of Coq extraction into Scala code. Scallina [3, 11, 12], is a
Coq to Scala translator. Scallina presents a grammar that encom-
passes a subset of both Coq and Scala, accompanied by an optimized
translation approach designed specifically for programs that ad-
here to this grammar. The goal is to obtain very readable Scala code
but at the cost of considering only a subset of Coq. To attain its
goal, it does not rely on Coq’s extraction to mini-ML. In particular,
Scallina does not support type-classes and only supports modular-
ity via records, not modules. As type-classes are essential to our
optimization and parallelization mechanisms and that we also rely
on parametrized module, Scallina cannot be used directly.

At the moment the process of Scala code generation is not au-
tomatic. One way to proceed is to look at the extracted code in
OCaml and reimplement what is obtained in Coq. For the exam-
ple presented in Section 4 the obtained OCaml program can be
re-implemented in the Coq subset that is handled by Scallina. We
then obtain the Scala+Spark code in Figure 6. This is also possible
with other SyDPaCC examples. It may be possible to automate this
process by using coq-of-ocaml2 and then from the obtained Coq
code by using Scallina. coq-of-ocaml translates a quite large sub-
set of OCaml into Coq. However, in some cases, the Coq extraction
uses some undocumented OCaml typing tricks that in general can
be unsafe, but are not in the context of extraction. coq-of-ocaml
does not support these features. One of our applications generates
such code, thus automation would not be possible.

As our goal is not to obtain readable code, we are considering
the design of an extraction mechanism to Scala embedded into Coq.
However, the type system of Scala is more different from the Coq
type system than OCaml and Haskell type systems.

5 SYDPACC FOR SPARK: DIFFUSION

By leveraging the diffusion theorem [20] and the associated ac-
cumulate skeleton, efficient programs can be computed for gen-
eral accumulative computations and effectively parallelized. This
allows considering a wider range a functions than just list homo-
morphisms.

The accumulate skeleton, as defined in [31], relies on other skele-
tons, including scan. The purpose of implementing the scan skele-
ton in Spark is thus to provide a Spark backend for the accumulate
2https://formal.land/docs/coq-of-ocaml

1 def scan[A: ClassTag]( monoid: Monoid[A], e: A, xss: RDD[A])
2 : RDD[A] = {
3 val ( op, i_op) = monoid. tuple()
4 val ys = xss. mapPartitions(
5 it => Iterator( it. foldLeft( i_op)( op))
6 ). collect() // local reduce

7 val zs: Array[A] = ys. scanLeft( e)( op) // global scan

8 xss. mapPartitionsWithIndex(
9 ( idx, it) => it. scanLeft( zs( idx))( op)
10 ) // local scan

11 }

Figure 7: Spark implementation for the Scan skeleton

skeleton. While the current paper presents a single implementation
for the scan pattern, other works propose additional implemen-
tations [33]. Exploring the feasibility and performance of these
approaches when implemented on Spark is a topic for future re-
search.

The scan method does not exist on RDD. Figure 7 proposes a
possible implementation to run scan distributively on RDDs. It is
a common implementation of a known algorithm often used on
distributed-memory environments. The scan function takes three
parameters: monoid, e, and xss. The monoid parameter represents
a type with an associative binary operation (op) and an identity
element (i_op). The e parameter is the initial value for the scan,
and xss is the RDD on which the scan operation will be performed.
The computation consists of three phases:

(1) A local reduction of each partition (line 4–6): The input
is mapped using the mapPartitions transformation. Each
partition of data is processed by folding its elements using the
monoid parameter. The result of each partition is collected
into the driver program using the collect action.

(2) A global scan from the reduced values (line 7): The scanLeft
method is applied to get the cumulative scan values.

(3) A local scan (line 8–10): Finally, each partition is processed
by performing a local scan on its elements, using as starter
the corresponding value from the previous phase (using the
mapPartitionsWithIndex transformation).

To match with SyDPaCC definitions of scan, we also provide
an implementation of scan on Spark that returns a pair containing
both the scanned RDD, and the total reduction of the input RDD,
corresponding to the (𝑛+1)th value when the scan operation returns
a list starting by the unit element of the monoid. To calculate this
value, we simply return the value at the last index of zs.

The implementation of scan on Spark including tests is about
1300 LoC and 2 days human effort. All the sources of this imple-
mentation on Spark are available on a git repository3.

The initial experimental results of the scan skeleton execution,
implemented in Fig. 7, demonstrate an encouraging scalability.

We recorded the computation time of the application of scan on
a list of 10 × 10 randomly generated matrices, using the monoid
(⊗, 𝐼10) where ⊗ is the product of matrices, and 𝐼10 the identity
matrix of dimension 10. The experiments have been conducted first
on a list of 100k elements (𝐿1), and 1M elements (𝐿2). The run on 𝐿1
took 8.85 seconds using 1 single Spark worker, 5.18 seconds with 2
3https://anonymous.4open.science/r/SyDPaCC-Spark/sydpacc-spark
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workers, and 3.33 seconds with 4 workers. Similarly, the execution
of scan on 𝐿2 took 82.93s on 1 worker, 55.02s on 2 workers, and
46.02s on 4 workers.

The presented results suggests that increasing the input size has
a significant impact on the computation time, leading to longer
execution times. However, by employing parallelization with a
higher number of workers, the execution time can be reduced. The
specific performance characteristics may vary depending on the
nature of the computation and the underlying algorithms used.

6 RELATEDWORK

The skeletal approach is a key concept for reasoning on parallel
programs [1], but is not a new research area. In the late 90s, many
works have focused on the formal derivation of functions on lin-
ear data-structures (e.g., list, array) into efficient parallel programs.
In [20] defined and used the diffusion theorem to decompose a
recursive definition into several functions such that each function
can be described by skeletons. Similarly, lists homomorphisms have
been used to obtain programs that can be decomposed onto a com-
position of parallel primitives [8, 19]. In [16], Gorlatch et. al. used
list homomorphisms for expressing a parallel scan operation. Dosch
et. al. used the same approach for both accumulation and indexing
operations on distributed lists in [10]. However all these works are
based on pen and paper proofs. In more recent work, researches
have used proof assistant to prove the semantics preservation of par-
allel programs. For example, Grégoire and Chlipala provide a small
parallel language and its semantics and proves correct optimiza-
tions of stencil-based computations [17]. In [9], Daum formalized a
subset of Data Parallel C using the Isabelle/HOL proof assistant.

Philippe et al. presented a formalized model transformation en-
gine in Coq in [39]. They further extracted this engine to generate
a running Spark program in two steps: first, generating sequen-
tial Scala code that corresponds to the Coq specification, and then
distributing the execution by replacing Scala’s sequential data struc-
tures with Spark RDDs. However, their approach has two notable
weaknesses. Firstly, the Coq formalization does not include the
distribution process of Spark; it only focuses on Scala functions.
While the semantics of Spark functions can be considered similar
to those of Scala, this limitation hinders reasoning about distribu-
tivity. Second, the extraction process was performed manually. It
lacked automation and formal proof of correctness, leaving room
for potential errors or inconsistencies.

The study of frameworks like Hadoop MapReduce [23, 33] and
Apache Spark [6] from a functional programming perspective is
relevant to our approach in SyDPaCC. Their usage of skeletons,
either modeled as high-order functions or as parametrized classes,
enable us to adopt a similar methodology for extracting MapReduce
or Spark programs from Coq. In [37], Ono et al. verified MapReduce
programs using Coq specifications, either by extracting Haskell
code for Hadoop Streaming or directly writing Java programs with
JML annotations. For the later, they used Krakatoa [13] for Coq
lemma generation. However, their work was less automated and
systematic compared to SyDPaCC.

In [21], Huisman et. al. proposed the verification of annoted pro-
gram transformations. Their work targets GPU programs obtained

from sequential loops, then optimized thanks to additional transfor-
mations (e.g., barrier introduction, change on data location). Thanks
to this approach, they verified an application of the scan pattern to
solve the maximum prefix sum (MPS) problem [41]. Their approach
have been generalized for verifying CPU parallel programs [5].
Contrary to our approach, they do not aim at verifying properties
expressed as annotations, but they infer from them correct new
properties on target programs expressed as kernel loops. Also, they
target specific programs, decreasing the scope of the results (e.g.,
they could verify scan pattern and solve the MPS problem using
it).

7 CONCLUSION AND FUTUREWORK

Apache Spark is widely popular in the field of big data process-
ing due to its powerful capabilities, flexible architecture, and the
large spectrum of applications it covers (e.g, graph processing with
GraphX [15]). Targeting Spark as a back-end solution for SyD-
PaCC opens up new possibilities for applying formal verification
techniques to big data processing. It opens the possibility of the
verification of algorithms, data transformations, and machine learn-
ing models implemented in Spark, providing increased confidence
in the correctness and reliability of these systems.

In this paper, we presented ongoing work towards an extension
of SyDPaCC to extract verified Scala code for running Spark pro-
grams from a Coq specification. In future work, we plan to conduct
experiments on a distributed architecture to estimate the scalability
of the execution of SyDPaCC skeletons on top of Apache Spark.
Moreover, we plan to extend the set of functions on RDDs to pro-
vide support for all the SyDPaCC specification including non-linear
data structures like binary trees [38]. Of course our priority is to
be able to automatically extract Scala code from Coq to be able to
easily use the extracted code in Apache Spark applications.

Spark provides a wide range of configuration options that af-
fect various aspects of its execution, such as memory allocation,
parallelism settings, task scheduling, and data serialization. These
configuration parameters can greatly influence the performance and
behavior of Spark applications. However, formalizing such aspects
can be challenging due to the dynamic and highly configurable
nature of Spark [28]. It is a non-trivial task that requires careful
consideration of the system’s complexity and dynamic behavior.
In addition, Spark code is run on top of the Java Virtual Machine
(JVM), which processes optimization while executing. Modeling
performance characteristics of applications running on the JVM is
more challenging compared to languages like OCaml when con-
sidering algorithm ran with BSML. OCaml has a more predictable
performance model due to their ahead-of-time compilation and
relatively simpler runtime system. In contrast, because of the JVM
dynamic optimizations (e.g., garbage collection, just-in-time com-
pilation), it is difficult to accurately predict the performance of a
Spark application.
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