
MathSTIC Spécialité : Informatique
Laboratoire : LS2N
Equipe : Naomod, Stack

Evaluation of Combinations of Model Management Execution Strategies for Low-Code

Development Platforms

Jolan Philippe
Mél : jolan.philippe@imt-atlantique.fr

Abstract: The low-code abstraction reduces the conception phase of applications. Because of the
increasing size of data, abstracting computations raised new challenges. To tackle scalability issues raised
by the size of the data, some tools are built upon speci�c computational strategies exploiting parallelism.
However �nding the most adapted approach for optimizing the interactivity of the applications is not a
trivial problem. Besides, the most e�cient solutions may be obtained by the use of several strategies at
the same time. This paper motivates the need for a multi-strategy use by executing the same query using
di�erent strategies, on di�erent input. It shows a di�erence of performances, depending on two factors:
the input model, and the used strategy.

Keywords: Spark, Model-Driven Engineering, Social Network

1 Introduction

Model-Driven Engineering (MDE) has taken an
importan place in the development of maintainable
software due to its abstraction level. By abstracting
concepts, the MDE paradigm reduces the cost and
the needed level of expertise both at development
and maintenance time [1]. Following this line, low-
code engineering provides graphical interfaces for
developing applications referred as low-code devel-
opment platforms (LCDPs) [2]. The conception of
applications is based on the manipulation of blocks,
which respect a given semantic. They only have an
access to these visual models that he can select,
combine, or insert, usually following a drag-and-
drop approach. At this point, LCDPs users do not
have a look on the back-end implementation of these
blocks. The fact is the possible implementations
can be numerous, with their own bene�ts and draw-
backs. The performance of these operations repre-
sent a �eld of study in the MDE community. More
speci�cally, model-management in LCDPs has a sig-
ni�cant need for automatic and transparent e�cient
and scalable operations, for manipulating, querying
and analyzing models.
We identify three main reasons for this need.

First, LCDPs need to provide complex visual de-
velopment environments with low response time
for keeping a high level of comfort for develop-

ers [3]. Second, there is a need of manipulating
large instance models of data (e.g., Facebook graph
is about a trillion of relationships [4]). Finally, large
number of users may want to manipulate the same
data at the same time. LCDPs must then be able to
e�ciently handle with a huge amount of concurrent
operations.

To improve e�ciency and scalability, recent re-
search on model-management studied parallel and
concurrent programming. These techniques range
from implementing speci�c execution algorithms (e.
g., RETE [5]) to compiling toward distributed pro-
gramming models (e.g., MapReduce [6]). In this
paper, we explore the performances of di�erent dis-
tributed approaches in a context of querying a social
network. Concretely, this paper proposes an exten-
sion of previous work published in [7], by providing
performance evaluation of parallel queries.

The rest of the paper is organized as follows. We
motivate our work with an example in Section 2.
Section 3 presents related work from literature that
is used for running a such example. In Section ??,
we give a quick overview of our implementations
based on distributed approaches. Their evaluation
is given in Section 4. We �nally give concluding
remarks in Section 5



Figure 1: The metamodel of a social network (TTC 2018)

2 Motivating Example

Social network vendors often provide speci�c de-
velopment platforms, used by developers to build
apps that extend the functionality of the social net-
work. Some networks are associated with market-
places where developers can publish such apps, and
end-users can buy them. Development platforms
typically include APIs that allow analyzing and up-
dating the social network graph.
As a running example for this paper, we con-

sider a scenario where a vendor adds a LCDP to
allow end-users (also called citizen developers in
the LCDP jargon) to implement their own apps.
Such LCDP could include a `What you see is what
you get editor' for the app user-interface, and a vi-
sual work�ow for the behavioral part. In particular,
the LCDPs would need to provide mechanisms, at
the highest possible level of abstraction, to express
queries and updates on the social graph.
In Figure 1 we show the simple metamodel for

the social graph that we will use in the paper.
The metamodel has been originally proposed at the

Transformation Tool Contest (TTC) 2018 [8], and
used to express benchmarks for model query and
transformation tools. In this metamodel, two main
entities belong to a SocialNetwork. First, the Posts
and the Comments that represent the Submissions,
and second, the Users. Each Comment is written by
a User, and is necessarily attached to a Submission

(either a Post or another Comment). Besides com-
menting, the Users can also like Submissions.
As an example, in this paper we focus on one par-

ticular query, also de�ned in TTC2018: the extrac-
tion of the three most debated posts in the social
network. To measure how debated is the post, we
associate it with a numeric score. The LCDP will
have to provide simple and e�cient means to de�ne
and compute this score. We suppose the vendor to
include a declarative query language for expressing
such computation on the social graph, and storing
scores as a derived properties of the graph (i.e. new
properties of the social graph that are computed on
demand from other information in the graph).

3 Related Works

There exist attempts of using distributed strate-
gies for running model management operations.
They can be decomposed into three main cate-
gories: data-parallelism approach, where the full set
of data is split among di�erent processors which ap-
plies the same computation on it; task-parallelism
where each processor runs a independent computa-
tions that not necessary the same; and asynchro-
nism where all data, and tasks are shared between
processors.

Data-parallelism This computation strategy
has been used by Benelallam et al. [9] for distribut-
ing model among computational cores to reduce
cores to reduce computation time in the ATL model

transformation engine. The MapReduce version of
ATL makes independent transformations of sub-
parts of the model by using a local �match-apply�
function. They highlight the good impact of their
strategy for data partitioning. Instead of randomly
distributing the same number of elements among
the processors, they use a strategy based on the con-
nectivity of models. at resolving dependencies be-
tween map outputs. Graph-based approaches have
been proposed. With this approach, the data is
structured as a set of vertices, connected by edges.
For instance [10] uses Pregel, a framework based
on this approach, for computing models with a dis-
tributed strategy.



Task-parallelism In [11], Madani et al. use
multi-threading for �select-based� operations in
EOL, the OCL-like language of the Epsilon frame-
work, for querying models. In [12], Tisi et al.
present a prototype of an automatic paralleliza-
tion for the ATL transformation engine, based on
task-parallelism. To do so, they just use a di�er-
ent thread for each transformation rule application,
and each match, without taking into account con-
currency concerns (e.g., race conditions).

Asyncrhonism LinTra [13] is a Linda-based
platform for model management and has several

types of implementation. First, on a shared-
memory architecture (i.e., a same shared memory
between processors, typically multi-threading so-
lutions), LinTra proposes parallel transformations.
Nonetheless, shared-memory architecture are �ne
for not too big models. Indeed, since the memory is
not distributed, a too big model could lead to a out-
of-memory errors. This phenomenon happens more
concretely in an out-place transformation since two
models are involved during the operation. The �rst
prototype of distributed out-place transformations
in LinTra, is presented in [14].

4 Evaluation

This Section gives an overview of the di�erent
strategies we use to implement the query to solve
the problem presented in Section 2. All the tech-
nical details can be found in [7]. First, the naive
implementation is based on its OCL speci�cation.
OCL is a standard for expressing queries, and con-
straints, on elements of models. It is decomposed
on several parts: �rst, all belonging comments of
a post are recursively obtained, then all their like
is count. From these two information, the score
of a post is calculated. This function has a di-
rect, but ine�cient, counterpart. The second im-
plementation, designed on top of Pregel, is based
on graph theory. Here, each element of the model
is considered as a single element. The third im-
plementation works on the MapReduce paradigm:
every element of the model, without considering its

type, is associated to a score. To �nally obtain a
score for a port, these intermediate scores a merged
into a single value. Finally, we implemented two
additional approaches by mixing the one presented
above. Some parts of the naive implementation can
be optimized using the Pregel strategy. Similarly,
the MapReduce implementation can be partially re-
placed by an execution based on the graph theory of
the Pregel paradigm. We experiment our �ve paral-
lel implementation of the TTC18 query (Section 2).
The experiments have been conducted on a shared
memory machine with a Intel Core i7-8650U having
8 cores at 1.90GHz and a memory of 32GB. The ma-
chine was running Ubuntu 16.04 LTS. We use Java
8, Scala 2.12 with Spark 3.1.0. Each speed-up on
Table 1 is the mean of a series of 30 measures.

Dataset Speed-up (compared to Naive (Sequential) solution)
#users #posts #comments #likes Naive (Sequential) Naive (Parallel) Pregel MapReduce OCL + Pregel MapReduce + Pregel

1 80 554 640 6 1x 0.40x 10.30x 5.82x 9.40x 4.63x
2 889 1064 118 24 1x 0.39x 0.36x 0.46x 0.44x 0.46x
3 1845 2315 190 66 1x 0.51x 0.68x 0.85x 0.66x 0.71x
4 2270 5056 204 129 1x 0.27x 0.35x 2.34x 0.15x 2.96x
5 5518 9220 394 572 1x 4.25x 5.21x 4.17x 4.68x 4.03x
6 10929 18872 595 1598 1x 4.68x 2.83x 2.39x 1.97x 3.91x
7 18083 39212 781 4770 1x 4.07x 4.12x 4.58x 5.17x 3.27x
8 37228 76735 1158 13374 1x 7.28x 9.52x 7.61x 9.66x 9.22x

Table 1: Speed-up of 5 implementations based on di�erent strategies for the TTC18 query

5 Conclusion

From our experiment, we observe two main points. First, using a distributed strategy generally look
too expensive for too small data set (4 �rst datasets). The second observation is, the input data and
its topology has an impact on the performances. For instance, the Pregel strategy looks to have a
good impact on performances for the 8th dataset, where it has a bad impact for the 6th dataset. The
fact that the experiments have been conducted on a single machine can be discussed. Since Spark, the
used platform is designed for Cloud architectures, we have to conduct similar experiments on a such
environment.



References

[1] Juha Kärnä, Juha-Pekka Tolvanen, and Steven Kelly. Evaluating the use of domain-speci�c modeling
in practice. In Proceedings of the 9th OOPSLA workshop on Domain-Speci�c Modeling, 2009.

[2] Massimo Tisi, Jean-Marie Mottu, Dimitrios S. Kolovos, Juan De Lara, Esther M Guerra, Davide
Di Ruscio, Alfonso Pierantonio, and Manuel Wimmer. Lowcomote: Training the Next Generation of
Experts in Scalable Low-Code Engineering Platforms. In STAF 2019, Software Technologies: Appli-
cations and Foundations (STAF 2019), CEUR Workshop Proceedings (CEUR-WS.org), Eindhoven,
Netherlands, July 2019.

[3] Salvador Martínez Perez, Massimo Tisi, and Rémi Douence. Reactive model transformation with
ATL. Sci. Comput. Program., 136:1�16, 2017.

[4] Avery Ching, Sergey Edunov, Maja Kabiljo, Dionysios Logothetis, and Sambavi Muthukrishnan.
One trillion edges: Graph processing at facebook-scale. Proc. VLDB Endow., 8(12):1804�1815, Aug
2015.

[5] Charles Forgy. Rete: A fast algorithm for the many pattern/many object pattern match problem.
Arti�cial Intelligences, 19(1):17�37, 1982.

[6] Je�rey Dean and Sanjay Ghemawat. Mapreduce: Simpli�ed data processing on large clusters. In
Proceedings of the 6th Conference on Symposium on Operating Systems Design & Implementation -
Volume 6, OSDI'04, pages 137�149, Berkeley, CA, USA, 2004. USENIX Association.

[7] Jolan Philippe, Héléne Coullon, Massimo Tisi, and Gerson Sunyé. Towards transparent combination
of model management execution strategies for low-code development platforms. In Proceedings of the
23rd ACM/IEEE International Conference on Model Driven Engineering Languages and Systems:
Companion Proceedings, MODELS '20, New York, NY, USA, 2020. Association for Computing
Machinery.

[8] Antonio García-Domínguez, Georg Hinkel, and Filip Krikava, editors. Proceedings of the 11th Trans-
formation Tool Contest, co-located with the 2018 Software Technologies: Applications and Founda-
tions, TTC@STAF 2018, Toulouse, France, June 29, 2018, volume 2310 of CEUR Workshop Pro-
ceedings. CEUR-WS.org, 2019.

[9] Amine Benelallam, Abel Gómez, Massimo Massimo Tisi, and Jordi Cabot. Distributed model-to-
model transformation with ATL on MapReduce. In Richard R. Paige, Davide Di Ruscio, and Markus
Völter, editors, Proceedings of the 2015 ACM SIGPLAN International Conference on Software Lan-
guage Engineering, SLE 2015, Pittsburgh, PA, USA, October 25-27, 2015, SLE 2015, pages 37�48.
ACM, 2015.

[10] Christian Krause, Matthias Tichy, and Holger Giese. Implementing graph transformations in the
bulk synchronous parallel model. In Stefania Gnesi and Arend Rensink, editors, Fundamental Ap-
proaches to Software Engineering, pages 325�339, Berlin, Heidelberg, 2014. Springer Berlin Heidel-
berg.

[11] Sina Madani, Dimitris S. Kolovos, and Richard F. Paige. Towards optimisation of model queries:
A parallel execution approach. Journal of Object Technology, 18(2):3:1�21, July 2019. The 15th
European Conference on Modelling Foundations and Applications.

[12] Massimo Tisi, Martínez Salvador Perez, and Hassene Choura. Parallel execution of ATL transfor-
mation rules. In Model-Driven Engineering Languages and Systems - 16th International Conference,
MODELS 2013, Miami, FL, USA, September 29 - October 4, 2013. Proceedings, volume 8107 of
Lecture Notes in Computer Science, pages 656�672. Springer, 2013.

[13] Loli Burgueño, Javier Troya, Manuel Wimmer, and Antonio Vallecillo. Parallel in-place model trans-
formations with LinTra. In Proceedings on the Software Technologies: Applications and Foundations
(STAF 2015) federation of conferences, L'Aquila, Italy, July 23, 2015., volume 1406 of CEUR Work-
shop Proceedings, pages 52�62. CEUR-WS.org, 2015.

[14] Loli Burgueño, Manuel Wimmer, and Antonio Vallecillo. A Linda-based platform for the parallel
execution of out-place model transformations. Information & Software Technology, 79(C):17�35,
Nov 2016.


