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ABSTRACT

SYDPACC is a set of libraries for the Coq interactive theorem prover.
It allows to develop correct functional parallel programs on dis-
tributed lists based on the transformation of naive sequential pro-
grams that are considered as specifications. To offer the paralleliza-
tion of functions on other data structures, the first step is to im-
plement a parallel version of the considered data structure and to
provide parallel implementations of primitive functions manipulat-
ing it. This paper presents such a first step: a binary tree extension
which includes new map and reduce pure functional algorithmic
skeletons for binary trees. Such algorithmic skeletons are templates
of parallel algorithms, realized in a functional context as higher-
order functions implemented in parallel. The use of these new
primitives is illustrated on example applications.
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1 INTRODUCTION

As most computing devices are now parallel architectures, parallel
programming should be the norm. It remains difficult. A trade-
off between programming productivity and execution efficiency is
necessary, and this trade-off is dependent on the application domain.
However, for mainstream applications, programming productivity
is more important than pure execution efficiency.

To increase parallel programming productivity, one solution is
to provide ready to use parallel patterns. It may restrict the set of
parallel algorithms that can be expressed, and performances may
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be slightly lower than approaches such as threads or MPI. This
approach is related to algorithmic skeletons [3] that are patterns
of classical parallel algorithms. Skeletons, as Google’s MapReduce,
were inspired by functional programming. Most of the time, algo-
rithmic skeletons are related to sequential patterns. For example, the
map skeleton applies a function to all the elements of a collection
of elements: this can be performed in sequential using an iterator
on the collection, or in parallel if the collection is distributed.

From the user point-of-view, one challenge in skeletal parallelism
is to choose the skeletons to use and to compose them. Being related
to functional programming, skeletal parallelism is related to the
theory of lists and more generally to the Bird-Merteens Formalism
(BMF) [1]. BMF provides a methodology to obtain step-by-step an
efficient functional program from an initial specification, either
as an inefficient function or as a relation. It is also possible to use
BMEF to obtain parallel programs implemented using algorithmic
skeletons [7].

SYDPACC [9] written with the Coq proof assistant (https://coq.
inria.fr), provides pure functional algorithmic skeletons based on
lists and distributed lists. However, trees are useful data types in
particular because they allow the representation of hierarchical
structures. For example, they are used to represent structured doc-
uments (e.g., XML). Nevertheless, it is difficult to write efficient,
and load-balanced parallel programs on trees: the tree structure is
irregular, and not necessarily balanced.

To tackle these problems, Matsuzaki et al. have designed parallel
skeletons for manipulating general trees. Their approach is based
on a BMF formalization of trees, and provides primitives to handle
both binary and rose trees [12]. Contrary to binary trees, rose trees
are trees with nodes which have not necessary two children. Their
skeletons are based on a simple scheme: arbitrary shaped trees are
transformed into binary trees, binary tree skeletons are applied, and
if it is necessary the result is re-transformed into a rose tree. From
this central idea, they developed several approaches to compute in
parallel on binary trees, e.g. [11].

Our goal is to extend SYDPACC with distributed trees. A first
step is to provide a parallel data structure representing binary trees
and parallel algorithmic skeletons on this data structure. This is the
contribution presented in this paper: a pure functional implementa-
tion of a distributed data structure of trees (Section 2) and a parallel
implementation of skeletons manipulating it, with the Coq proof
assistant (Section 3). Moreover, we performed performance tests
on two applications obtained as OCaml code extracted from Coq,
with calls to the parallel functional programming library BSML [10]
(Section 4). We present related work in Section 5 and conclude in
Section 6.
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segs = [ [Cr a]; [Le b]; [Crc]; [No d; Le f; Le g]; [Le e] ]

Figure 1: An example of a list representation of a tree (m=3)

2 A LIST REPRESENTATION OF TREES

We write f x for the application of function f to element x, instead
of f(x). Parenthesis are still needed in some cases: for example, we
write f (g x) to apply function f to the result of the application of
g to x, while f g x means that function f has two arguments, g and
x respectively. Ax = e denotes an anonymous function that has an
argument x and a body e. o denotes function composition.

A list is a homogeneous sequence of values of the same type. A
list has type list @ when its elements have type a. A list can either
be empty, written [], or x :: xs where x is the head element and xs
a tail list. [x1; x2] is another notation for x; :: x2 :: []. Informally,
applying a function f to each element of a list is defined as:

map f [x1; x25 .. .5 xn] = [fx1; fx2; .. .5 fxn]
Considering an associative operation @ and its neutral element
ig, reduce can be informally defined as follows:

reduce (®) [x1; x2; .. .; Xn] =l ®X1DX2D ... D xp

In the Coq code, these two functions will be denoted respectively
by List.map and List.reduce.

Contrary to lists, the structure of trees is not linear. We describe
here the structure of binary trees. There are two ways of building a
tree: Leaf a represents a leaf containing a value a, and Node (I, b, r)
represents a node built using a value b and two subtrees [ and r.
The type of the values contained in the leaves are not necessarily
the same than the ones in the nodes: a tree of type BTree o f has
leaf values of type a and node values of type f.

map on trees is defined as follows:

Leaf k1 a

map ki kn (Leaf a)
map ki, kn (Node (I, b, r))
Node (map kp kn I, kn b, map kg kn r)

The reduction of a tree is defined as:

reduce k (Leaf a) = a
reduce k (Node (1, b, r)) k (reduce k 1) b (reduce k r)

To develop skeletons to compute on trees on distributed-memory
parallel computers, we must split the data structure into smaller
elements which will be distributed. It is easy to do for a list of n
elements: if we have p processors we divide the list into p sub-lists
of about % elements. It is more difficult for trees. One solution is

first to obtain a sequential linear structure representing trees. The
linearization used here is based on the m-Bridge algorithm, defined
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Inductive val A B := | Le: A—val AB | No: B—val AB | Cr: B—val A B.
Definition segment A B := list (val A B).

Definition map_local A B C D (kL: A>C)(kN:B—D)(seg: segment A B) :=
let fmap (v:val A B) :=
match v with|Le v=Le(kL v) [No v=No(kN v) |Cr v=Cr(kN v) end
in List.map fmap seg.

Definition map A B C D (kL: A—=C)(kN:B—D)(segs:list(segment A B)) :=
List.map (map_local kL kN) segs

Definition reduce A B C (k: (A«B=A) — A)(segs : list (segment A B))
{Hc : Closure A B C k phi psiN psilL psiR} : option A :=
let local := map_filter_some (reduce_local k phi psilL psiR) segs in
reduce_global psiN local.

Figure 2: Coq Code: Sequential Functions

from graph theory [13], which consists in splitting the tree into
several subtrees and transforming these subtrees into lists.

Definition 2.1 (m-Critical Node). Giving an integer m, a node t is
called m-critical if for each ¢’ child of ¢, the following inequality is
respected: [size(t)/m] > [size(t’)/m], where size(t) denotes the
number of elements in the tree ¢.

Definition 2.2 (m-Bridge). Giving an integer m, a m-bridge is a
set of adjacent nodes divided by m-critical nodes. In other words, a
m-bridge is a set of adjacent nodes where the m-critical nodes are
only root or bottom of the resulting subtrees.

The critical nodes are the cut points of the tree. According to
definition 2.2, they are either the root or the bottom of the resulting
subtrees.

In a linearized tree, data is stored in lists of values, called seg-
ments. Figure 2 presents the Coq definition of a segment. It is a list
of values, each being either a leaf value, a node value, or a critical
node value. An example is given in Figure 1 for m = 3.

map and reduce can be defined on linearized trees.

The map function is quite easy to define since there is no de-
pendency among the nodes during the computation. A function
map_local is defined which will be applied to each segment. It aims
to apply kg, (resp. kn) on the elements marked as leaves (resp. as
nodes or critical nodes). The function is defined in Figure 2.

Contrary to map, reduce needs for each node to combine the
results obtained from reducing its children trees with the value
held by the node as shown before.

For a linearized tree, that is a list of segments, it means we first
need to reduce each segment, then reduce the intermediate list of
partial reductions. The reduction of each segment is also not as
direct as the reduction on binary trees because it is more difficult
to identify the children of a node in a segment.

Computing a reduction on a linearized tree requires that its
parameter function k verify a property named the closure property:
the existence of four auxiliary functions ¢ ¥, ¥; and ¢, such that:

kibr Unl(pb)r
Yn Wnxly)br Ynx (W lbr)y (1
Unlb(Ynxry) = Yux@rlbry
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Intuitively this property corresponds to a generalization of the
associativity for a binary operation.

The reduction on a linearized tree proceeds in two steps. First,
reduce_local applies the functions ¢ and either ¢; or ¢, to the m-
critical nodes and their ancestors, and apply k to the other internal
nodes. Each segment will then become a single value, corresponding
to a local reduction. Nonetheless, the local reduction, as described,
only works if it is applied to a segment obtained as the correct
linearization of a tree. For a list of values that is not well-formed,
this function returns None. For a well-formed segment it returns a
value Some v where v is the result of the local reduction. To reduce
the list of segments, we could apply List.map to reduce_local and the
linearized tree. However, we need to filter out the None results and
transform the values of the form Some v into just v. This is done
by a function named map_filter_some. For example, if a function f
returns None of all odd number and Some n for any even number n,
map_filter_some f [1;2;3;4] returns [2;4].

In the second step, all these intermediate results are merged
using another function, reduce_global, into a single value thanks
to Y. The sequential version in Coq is shown in Figure 2. Note
that in this code, the argument Hc is a pre-condition: it means the
function k should satisfy the closure property (1).

3 PARALLELIZATION: TREE SKELETONS

Bulk Synchronous Parallel ML (BSML) is a functional parallel pro-
gramming language currently implemented as a library for the
OCaml language [10] that follows the BSP model [15]. A BSP com-
puter is a set of processor-memory pairs, connected by a network
for point-to-point communications, and a global synchronization
unit. The execution of a BSP program proceeds as a sequence of
super-steps divided into three phases. In the computation phase,
each processor computes using only the data it holds in its private
memory. The communication phase processes data exchange. After
the last phase, the synchronization, the exchanged messages are
guaranteed to have reached their destinations. BSML offers a paral-
lel data structure: for a type A, par A is a parallel vector of elements
of type A. Each processor holds only one value of type A. In the
BSP model the number of processes remains the same during all
execution: thus the size of parallel vectors is fixed. The nesting of
such vectors is not allowed.

In our implementation of skeletons, the considered data structure
will be a parallel vector of lists of segments. It is possible to think
sequentially about this data structure as the concatenation of the
lists of segments.

As described in the previous section, on a linearized version
of a tree, the map function on trees is a map function on lists.
Moreover, the SYDPACC framework already features a map skeleton
on distributed lists, named ParList.map. A parallel map on distributed
trees is shown in Figure 3.

The parallel version of reduction proceeds, as the sequential
version, in two steps. For the first step, instead of having one list of
segments, we have one list of segments per processor. So we need
to apply the first step of the sequential version at each processor.
That is done using the parfun: ¥ A B, (A—B)—par A—par B function
of BSML. Intuitively parfun transforms a sequential function into a
function that operates on parallel vectors, applying the sequential
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Definition map_par {A B C D} (kL:A—C) (kN:B—D) :
par (list (segment A B)) — par (list (segment C D)) :=
ParList.map (map_local kL kN).

Definition reduce_par A B C (k: (A«B+A)—A) (v:par(list(segment A B)))
{Hc: Closure A B C k phi psiN psiL psiR} : option A :=
let I:=parfun(map_filter_some(reduce_local k phi psiL psiR)) v in
reduce_global psiN (ParList.join local).

Figure 3: Coq Code: Tree Skeletons

function in parallel at each processor. In Figure 3, the result of this
first step is named | that has type par (list(sum A C)). sum A C means
that each element of the list has type A or type C.

The second step cannot be made in parallel. As the result of
the previous step is a parallel vector, we first need to transform
this parallel vector into a list. This is done by the SYDPACC func-
tion ParList.join that transforms a parallel vector of lists into a list
(present on all the processors). We perform the global reduction on
the resulting list.

4 APPLICATIONS AND EXPERIMENTS

We present here two examples of the use of map and reduce on
distributed linearized trees and experiments with them on a parallel
machine.

The height of a binary tree can be written with a recursive
function as a single-bottom up computation:

height (Leaf a)
height (Node (b, 1, r))

1
1+(1r)

where [ T r computes the maximum of [ and r. This function can
be easily defined thanks to the map and reduce functions:

height = (reduce (A(x,1,r) = x+( T r))) o (map (Ax=1)(Ax=1))

For a parallel version, we need to use map_par and reduce_par. For
reduce_par we need to prove that the function argument of reduce
satisfies the closure property. It is the case with:

¢pb = (-o0,b)
YN Db, b2)r = by T(ba+1) 1 (ba+7)
YL (i, I2) (b1, b2) r b1 7T (b1 +1) T (b2 +71),b2 + 1)
Yr (b1, b2) (r1, r2) = (b1 T (b2 +1) T (b2 +11),ba +12)

The properties count application aims at getting the number of
elements which respect a given property. Considering two predi-
cates pr. : @ — bool and py : f — bool the number of leaves and
nodes respecting the properties in a binary tree of type BTree o
can be implemented as a single-bottom up computation:

count pr pN (Leaf x) = if (pr x) then 1 else 0
count pr, pN (Node (I, x, r)) =

(if pN x then 1 else 0) + (count pr pN 1) + (count pp pN T)

The function can be written using the primitives reduce and map:

count pr, pn = (reduce (A(x,l,r) = x+1+7r)) o (map fL fN)
with fpx =if pxthenlelse0and fi = f pr and fn = f pN
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Figure 4: Relative Speed-up

and the closure property holds for:

b+l+r
b+1l+r.

¢b = b Unlbr
Yrlbr b+l+r Yrlbr

Experiments were conducted on a shared memory machine with
two Intel Xeon E5-2683 v4 processors with 16 cores at 2.10 GHz,
256Gb of memory. The following resources were used: Ubuntu
Linux 18.04, Coq version 8.8.1, BSML version 0.5.5, OpenMPI ver-
sion 1.10.7, and OCaml version 4.02.3.

The tests have been conducted using the count function, on
a tree of 3 x 3 matrices of size 223 — 1. The application counts
the number of orthogonal matrices. The value of m used to split
the tree is calculated by m = 2VN with N the size of the tree.
30 measures have been taken on three kinds of tree: balanced,
completely unbalanced and with a random shape. Figure 4 shows
the average relative speedup for each type of tree depending on the
number of processors p. These experiments show that the obtained
performances does not depend heavily on the kind of tree.

However, the value of m has importance. A small value creates a
list of small segments which is easier to distribute in a balanced way
but leads to more costly communications during reduction. A large
value makes fewer segments and leads to cheaper communications,
but the distribution may be more unbalanced. The current value of
m does not depend on the number of processors. We plan to take
into account the BSP parameters of the parallel machine as well
as parameters specific to the application (basically the size of each
element of the tree, assumed the same for all elements, and the time
required to test the elements, assumed constant) to analytically
have a bound for the best values of m.

5 RELATED WORK

On the implementation side, algorithmic skeletons libraries mostly
consider linear data structures such as lists and arrays [2, 5, 8].
One exception is SkeTo (http://sketo.ipl-lab.org): its earlier versions
contained tree algorithmic skeletons, but the latest version does
not, although recent work considers a new implementation [14].
To our knowledge, the proposed implementation of binary trees
is the only pure functional explicit parallel implementation. Being
implemented using a proof assistant is another distinctive feature.
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However proof assistants have been used to reason about parallel
programs. For example, Grégoire and Chlipala provide a small
parallel language and its semantics and proves correct optimizations
of stencil-based computations [6]. A subset of Data Parallel C has
been formalized using the Isabelle/HOL proof assistant [4]. None
of these works consider trees.

6 CONCLUSION AND FUTURE WORK

We have extended the SYDPACC framework with a new set of
algorithmic skeletons for tree manipulation on a distributed data
structure of linearized trees. This allows to write parallel programs
on trees within Coq and to reason about them. The full source code
is available at https://sydpacc.github.io.

As future work, we plan to extend SYDPACC so that its verified
automatic parallelization feature can target this new data structure
and skeletons. To do so we need to provide verified type corre-
spondences first between binary trees and linearized trees, and
then between linearized trees and parallel linearized trees. Based
on these correspondences, we will prove the correspondence of
sequential map and reduce on trees with sequential map and re-
duce on linearized trees, and then with parallel map and reduce on
parallel linearized trees.
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