
New List Skeletons for the Python Skeleton Library
Frédéric Loulergue∗†, Jolan Philippe‡§

∗School of Informatics Computing and Cyber Systems, Northern Arizona University, USA
†IMT Atlantique, LS2N, UMR CNRS 6004, F-44307 Nantes, France
‡frederic.loulergue@nau.edu, §jolan.philippe@imt-atlantique.fr

Abstract—Algorithmic skeletons are patterns of parallel com-
putations. Skeletal parallel programming eases parallel program-
ming: a program is merely a composition of such patterns. Data-
parallel skeletons operate on parallel data-structures that have
often sequential counterparts. In algorithmic skeleton approaches
that offer a global view of programs, a parallel program has
therefore a structure similar to a sequential program but operates
on parallel data-structures. PySke is such an algorithmic skeleton
library for Python to program shared or distributed memory
parallel architectures in a simple way. This paper presents an
extension to PySke: new algorithmic skeletons on parallel lists.
This extension is evaluated on an application.

Index Terms—high-level parallel programming, structured
parallelism, algorithmic skeleton, Python, arrays.

I. INTRODUCTION

Parallel architectures are now everywhere, from smart-
phones to super-computers. But while parallel architectures
are mainstream, it is not the case for parallel programming
and skilled parallel programmers. Python is a language more
and more popular: in popularity rankings (based on internet
search queries) and in lines of code in public repositories it
is ranked as one of the first three programming languages in
2019. It is also more and more popular as an introductory
teaching language, both in computer science curricula [1] but
also in informatics curricula. A recent survey of the Python
Software Foundation and JetBrains 1 also shows that in 2018
58% of developers used Python for data analysis (from 50%
in 2017). This ratio is even higher for the 84% of developers
who use Python as their main programming language.

As the size of data to analyze grows, it is necessary to
provide the programmers who are not expert in parallel pro-
gramming, and often not computer scientists, ways to leverage
the parallel architectures they have for data analysis in Python.

In the various approaches for high-level parallel program-
ming, algorithmic skeletons [2], [3], [4] are quite popular
even though the most popular frameworks belonging to this
family of approaches are not presented as skeletal parallelism
frameworks. Basically, an algorithmic skeleton is a pattern
of parallel computation. There are task- and data-parallel
skeletons. Often data-parallel skeletons operate on parallel
data-structures that have sequential counterparts, and therefore
the skeletons themselves have sequential counterparts. For
example the map skeleton is often a skeleton that applies a
sequential function to all the elements of a parallel collection

1https://www.jetbrains.com/research/python-developers-survey-2018/

and it is also a function on sequential lists in functional pro-
gramming languages. The most popular skeleton framework
is Google’s MapReduce [5] although the skeletons it provides
differ from more traditional map and reduce skeletons.

PySke [6] is a library of algorithmic skeletons for Python,
on parallel lists and parallel trees. PySke provides a global
view of programs, i.e. a PySke program is written as a
sequential program but it operates on parallel data-structures.
It is simpler than the Single Program Multiple Data (SPMD)
style of most MPI programs. When possible (it is not possible
for all skeletons on trees), PySke provides the same methods
for both a sequential and a parallel data-structure.

The contributions of the present paper are:
• new expressive algorithmic skeletons on lists,
• evaluation of the new skeletons on applications.
The remaining of the paper is organized as follows. We

discuss related work in Section V. Section II gives an overview
of PySke both from the user and implementer perspectives.
In Section III, we present new skeletons on the parallel list
data-structure. We experiment with these new skeletons in
Section IV and conclude in Section VI.

II. AN OVERVIEW OF PYSKE

A. A User’s Perspective

PySke is a library for Python currently implemented on
top of MPI and mpi4py [7]. However, PySke’s programming
model is independent of the communication library.

PySke offers a global view of programs. A PySke program
is written and read as a sequential program but operates on
parallel data structures. This aspect is very different from the
SPMD paradigm of MPI where most of the time a program
is actually parametrized by the process identifier (returned by
the method Get_rank in mpi4py). The global parallel MPI
program should be understood as the parallel composition of
instantiations – for all possible process identifiers – of this
parametrized sequential program. This “par of seq” structure
is more complicated to deal with than the “seq of par” structure
that global view offers [8].

For readers familiar with MPI, PySke can be thought as a
library of collectives. Nevertheless there is a major difference
between MPI and PySke. Arguments to MPI collectives have
regular C types but the collection all the values of these
sequential types may be thought as a parallel data structure
whereas in PySke there are classes dedicated to parallel data
structures. In PySke, the sequential/parallel nature of values is

https://www.jetbrains.com/research/python-developers-survey-2018/


def _max0_copy(num):
return max(0, num), num

def _max_sum(pair_a, pair_b):
a_m, a_s = pair_a
b_m, b_s = pair_b
max_ = max(a_m, a_s + b_m)
sum_ = a_s + b_s
return max_, sum_

def mps(input_list: List):
max_, _ = input_list

.map(_max0_copy)

.reduce(_max_sum, (0, 0))
return max_

Fig. 1. A First PySke Example

therefore visible in their types. No parallel type exists in MPI,
and it may be difficult (and it is an undecidable problem in
general) to know whether a value is sequential or should be
thought as being part of a distributed data structure.

PySke contains two main kinds of data structures: lists
and trees. We refer to [6] for a presentation of the tree data
structures. In the present paper, we focus on list data structures.
With respect to the first version of PySke, we know have an
interface List that contains the documentation for all the
methods on lists. It also features detailed type hints that we
consider to be very useful documentation items. Both SList,
the class of sequential lists, and PList, the class of parallel
lists, implement this interface. In the remaining, a method on
a sequential data structure is called a primitive, while it is
called an algorithmic skeleton, or skeleton, on a parallel data
structure. It is important to notice that PList are immutable
data structures. All skeletons and primitives return new lists
or scalar values. For each primitive we provide a skeleton,
and vice versa. This allows for the rapid prototype of PySke
applications, even without mpi4py installed. While SList is
strictly speaking not an immutable data structure, because it
inherits from list for convenience, the recommended style
is to use it as an immutable data structure.

The program example of Figure 1 illustrates the polymor-
phic nature of PySke. The variable input_list can be
either SList or PList. In the former case, the execution can
be sequential only. In the later case, it uses MPI for parallel
processing.
mps returns the largest sum of all the sums of the prefixes of

the input list. For example, the prefix list returning the largest
sum, is [6, -3, 0, 4] in the following execution2:
>>> mps(PList.from_seq([6, -3, 0, 4, -4]))
7

from_seq builds a parallel list from a sequential list.

2We present the code and results as given in the Python interpreter, omitting
imports. >>> represents the prompt.

Global View
[0, 2, 4, 6, 8, 10, 12, 14, 16]

SPMD View
processor 0 1 2 3
content [0, 2, 4] [6, 8] [10, 12] [14, 16]
global size 9 9 9 9
local size 3 2 2 2
start index 0 3 5 7
distribution [3, 2, 2, 2] [3, 2, 2, 2] [3, 2, 2, 2] [3, 2, 2, 2]

Fig. 2. Parallel Lists: API View vs. Implementation View

mps is implemented as a composition of map and reduce.
Simpler examples of application of both skeletons follows:
>>> SList([1, 2, 3]).map(lambda x: x + 1)
[2, 3, 4]
>>> SList([1, 2, 3]).reduce(add, 0)
6
>>> SList([]).reduce(add, 0)
0

Basically, to compute the maximum prefix sum, we compute
a pair containing the maximum prefix sum and the sum. The
intuition behind the definition of _max0_copy is that if we
consider an element as a singleton list. The maximum prefix
sum for this list is either 0 if the element is negative (the prefix
is then the empty list), or the element itself. _max_sum is
defined as follows: pair_a represents the maximum prefix
sum (a_m) and the sum (a_s) of a list a, and pair_b the
same for a list b. To compute the maximum prefix sum of the
list obtained by concatenating a and b, we need to take the
maximum of the maximum prefix sum for a and the maximum
prefix for a followed by b. The maximum prefix sum value
for this second list is a_s + b_m.

There are several variants of the map skeleton:

1) mapi where the function argument to mapi is applied
to each index and associated value in the list,

2) map2 that takes two arguments in addition to the current
object: a function and a list, and applies the function
to elements of both lists; these two lists should have
the same distribution (as explained in the next section);
map2i is a variant of map2,

3) zip creates a list of pairs from two lists having the same
distribution.

There are several variants of the prefix sum skeleton scanl.
An example of scanl follows:
>>> par_list = PList.init(str, 4)
>>> par_list.scanl(concat, '').to_seq()
['', '0', '01', '012']

init is the main way to build parallel list in PySke. It
takes as argument a function used to initialize the values of
the list, and the size of the list. to_seq() transforms a
parallel list into a sequential list. par_list.to_seq() is
['0', '1', '2', '3'].



B. An Implementer’s Perspective

Users can think about their PList in a global way, i.e.
as a sequential list of type SList. However these lists can
be indeed distributed on different machines, in a transparent
machine. The underlying implementation of PySke follows the
SPMD paradigm and is currently implemented using MPI.

For an example list, Figure 2 shows both the global view
presented to the user of the library, and the way this view is re-
alized following the SPMD paradigm (for 4 processors). Each
row in the SPMD view corresponds to a private attribute in
the Python implementation. Names in italic represent attributes
that contain the same values on all processors. “content” is
specific to each processor and contains the specific part of the
global list that this given processor has. Note that the type of
this attribute in SList. “start index” is the index in the global
size of the first element of the local list. In the global list, the
value 6 has index 3. But this value is the first element of the
local list at processor 1. Therefore the value of “start index”
at processor 1 is 3. The “distribution” attribute contains the
list of all local sizes.
init builds an evenly distributed list, i.e. a list where the

local sizes differ at most by 1, and the possibly larger local
lists are on processors of low identifier. The list presented in
Figure 2 is such an evenly distributed list. from_seq does
not build an evenly distributed list: all the elements at are
processor 0.
map, scanl and their variants return lists that have the

same distribution as their input. When a PySke skeleton
manipulates more that one list, all these lists should have the
same distribution.

C. Distribution Changing Skeletons

Some skeletons exist to change the distribution of a list.
get_partition makes the distribution of the lists visi-
ble in the structure itself. For example, get_partition
on the list of type PList in Figure 2 yields the PList
[[0, 2, 4], [6, 8], [10, 12], [14, 16]] (global view). Now each pro-
cessor contains only one element (local size 1), but this
element is a list. The distribution of this new list is [1, 1, 1, 1].
flatten is the inverse operation of get_partition.

Communications are needed to compute the new values of all
the attributes but “content”.

The filter skeleton that filters out elements in a list that
does not satisfy the given predicate can easily be implemented
using these skeletons:
def filter(self, predicate):

return self.get_partition()
.map(lambda l: l.filter(predicate))
.flatten()

Note that filter is not recursive: this code is the method
of PList, while in the application of map, filter is
the sequential filter of class SList. Also the distribution
of the list returned by filter may be unbalanced: all the
elements of one processor may have been filtered out while
the other processors keep their contents. One very important

feature of filter is that it is implemented only using other
PySke skeletons. We call such skeletons, derived skeletons.
They are skeletons that PySke users could define. Most other
skeleton libraries require skeletons such as filter to be
defined at the implementer’s level. Having a set of skeletons
expressive enough to be able to define derived skeletons makes
PySke more maintainable than other libraries. It also allows
to have intermediate level users who do not need to know the
implementation details of PySke but can still provide derived
skeletons to less skilled users.

An example of use follows:
>>> par_list = PList.init(lambda x: x, 10)
>>> par_list.filter(is_even).to_seq()
[0, 2, 4, 6, 8]

The balance skeleton simply makes a list evenly dis-
tributed. This skeleton perform communications to exchange
content between processors.

III. NEW LIST SKELETONS

This section present new list skeletons for PySke.

A. The distribute Skeleton

The distribute skeleton is a generalization of the
balance skeleton. The balance skeleton assumes that the
target distribution is the default distribution when parallel lists
are created: each processor contains at most one more value
than each other processor. However, such a distribution may
not be appropriate.

First, the size of the elements in the parallel list may be
different (for example if we have a list of matrices of different
sizes) and/or the computational resources needed to deal with
the elements in the list depends on the values or on the size
of each element. In this case a non evenly distribution of data
may lead to more balanced computations.

Second, some skeletons that are applied to both the current
parallel list object and an additional parallel list object require
that the distributions of the parallel lists are identical. Rather
than balancing both parallel list, it may be more efficient to
redistribute one of the lists so its distribution matches the
distribution of the other list.

The skeleton distribute takes an argument: a sequential
list that represents the target distribution. This list should
have a length equal to the number of processors, the values
contained in this list should be positive (possibly zero), and
the sum of these values should be equal to the global size of
the parallel list the distribute method is applied to.

This skeleton proceeds as follows: first it computes the
global indices of the first and last element for each processor,
both in the source distribution and in the target distribution.
This gives either an interval of indices, or the empty interval ∅.
Then each processor intersects its source global interval with
the target global intervals of all processors (including itself).
These global intervals are offset to local intervals using the
start index of the source parallel list. Finally these intervals
are used to get the slices of the local contents of the parallel
list to send to other processors. After a call to the MPI



Source start index [0,⊥, 10, 20]
Source distribution [10, 0, 10, 15]
Target distribution [5, 10, 10, 10]
Source global intervals [(0, 9), ∅, (10, 19), (20, 34)]
Target global intervals [(0, 4), (5, 14), (15, 24), (25, 34)]

Global intervals to send

[(0, 4), (5, 9), ∅, ∅]
[∅, ∅, ∅, ∅]
[∅, (10, 14), (15, 19), ∅]
[∅, ∅, (20, 24), (25, 34)]

Local intervals to send

[(0, 4), (5, 9), ∅, ∅]
[∅, ∅, ∅, ∅]
[∅, (0, 4), (5, 9), ∅]
[∅, ∅, (0, 4), (5, 14)]

Fig. 3. Example of Execution of the distribute Skeleton

alltoall function, the resulting list of lists is flattened to
a list. This gives the content of the local lists, the other fields
of the parallel list are easily computed. The global size is the
global size of the input parallel list. The distribution and the
local sizes are given by the argument to distribute. The
start index is obtained by computing the scanl of the target
distribution. Figure 3 shows some of the intermediate values
for an example parallel list of size 15 on 4 processors.

B. New Derived Skeletons

The distribute skeleton allows to implement commu-
nication oriented derived skeletons as shown in Figure III-B.
Such skeletons are often present in other libraries, but there
are implemented at a low level: in SPMD using directly
MPI calls. In our case, the implementation of these derived
skeletons could have been written by a PySke user without
knowing the implementation details of PySke. This has two
main advantages:

• the implementation is more maintainable,
• the PySke implementation is also more portable. As

we mentioned earlier, the programming model of PySke
is not tied to MPI. For example, a shared memory
implementation of PySke is possible. With a high-level
implementation of scatter and gather, it is not
necessary to re-implement them for the shared memory
version of PySke. The implementations of Figure III-B
would work with any new implementation of the non-
derived algorithmic skeletons.

Informally, gather gathers all the elements of the current
list to the given processor. scatter scatters all the elements
hold by the specified processor to all processors. The returned
list is evenly distributed. scatter_range is a variant of
scatter. Instead of specify a processor identifier as the
source of the elements to scatter, these elements are specified
by their indices in the list, as a range.

The code of Figure III-B only uses already described
skeletons. The distribution information is actually defined as
an object of Distribution. This class inherits from ’list’,
and it provides the static method balanced that creates an
evenly distributed distribution for a list of the given size.

def gather(self, pid):
assert pid in par.procs()
d_list = [self.length() if i == pid

else 0 for i in par.procs()]
distr = Distribution(d_list)
return self.distribute(distr)

def scatter(self, pid):
assert pid in par.procs()
def select(index, a_list):

if index == pid:
return a_list

return []
at_pid = self.get_partition()

.mapi(select).flatten()
size = at_pid().length()
distr = Distribution.balanced(size)
return at_pid.distribute(distr)

def scatter_range(self, rng):
def select(index, value):

if index in rng:
return value

return None
def not_none(value):

return value is not None
selected = self.mapi(select)

.filter(not_none)
size = selected.length()
distr = Distribution.balanced(size)
return selected.distribute(distr)

Fig. 4. Derived Algorithmic Skeletons

par.procs() is not a skeleton but is part of a small set (in
module par) of utility functions. procs() simply returns
the list of available processors.

C. The permute Skeleton

The permute skeleton aims at reordering the elements of
a list without changing its distribution. It takes as argument a
bijective function on the set of the list indices.

For example:
>>> SList([1, 2, 3]).permute(lambda x: 2-x)
[3, 2, 1]

The implementation of permute on PList proceeds as
follows: First, each element in the local lists are tupled with
their new index in the global list, and the processor that
holds this index, Then, all these tuples are then grouped by
processor of destination. The obtained lists of pairs (new index,
value) are exchanged using MPI alltoall. Finally, the local
contents are updated using these lists of pairs.

The steps manipulating lists are implemented using SList
primitives.



1 def fft(input_list: PList[float]) -> PList[complex]:
2 size, nprocs = len(input_list), len(par.procs())
3 log2_s, log2_p = int(math.log2(size)), int(math.log2(nprocs))
4 result = input_list.map(complex)
5 for j in range(0, log2_p):
6 permutation = result.get_partition()\
7 .permute(partial(_bit_complement, log2_p - j - 1))\
8 .flatten()
9 result = permutation.map2i(partial(_combine, size, log2_s, j), result)

10 for j in range(log2_p, log2_s):
11 permutation = result.get_partition()\
12 .map(lambda l: l.permute(partial(_bit_complement, log2_s - j - 1)))\
13 .flatten()
14 result = permutation.map2i(partial(_combine, size, log2_s j), result)
15 return result

Fig. 5. Fast Fourier Transform

To compute the processor that holds an index, it is first
necessary to compute the scanr variant of the prefix sum of
the distribution of the parallel list. In this variant, the result
list has the same length as the input list, but its first element
is the first element of the initial list. scanr takes only one
argument in addition to the input list: a binary operation.

For example, if we consider the list of Figure 2, the prefix
sum scanr returns the list [3, 5, 7, 9]. Then for a given index
i, we search the value v in this list such that i is smaller than
v and i is greater or equal to the value preceding v in the list.
For example, for index 6, this value is 7. The index of 7 in
the list being 2, the processor holding the index 6 is processor
2.

IV. EXPERIMENTS

We experiment on a PySke parallel implementation of the
Fast Fourier Transform (Figure 5). The algorithm needs log n
steps to complete, where n is the size of the input list.
Both the number of processors and n should be a power of
two. Basically, the computation needs to combine successively
elements at indexes that correspond to a butterfly network. As
the list is distributed on processors, the algorithm has therefore
two main phases. In the first phase (lines 5–9), it is necessary
to permute whole partitions of the current parallel list. In
the second phase (lines 10–14), it is necessary to permute
elements only in the same local partition. As PySke provides
the same skeletons for both parallel lists and sequential lists,
and that in a parallel list the local partitions are sequential lists,
both phases are actually very similar. _bit_complement
computes the correct indices that correspond to the butterfly
network. _combine actually computes the new complex
number based on two complex numbers that are linked in the
butterfly network, and a complex number on the unit circle
that only depends on the size of the input list, and the indexes
of both complex numbers.

The experiments have be conducted on a shared memory
machine with two Intel Xeon E5-2683 v4 processors each

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0

5

10

15

20

0 10 20 30
Number of processors

M
ea

n 
tim

e 
(s

)

type

● FFT size = 2^18

 1.00
 1.97

 3.65

 6.09

11.20

24.34

 1.00
 1.97

 3.65

 6.09

11.20

24.34

 1.00
 1.97

 3.65

 6.09

11.20

24.34

 1.00
 1.97

 3.65

 6.09

11.20

24.34

0

5

10

15

20

25

01 02 04 08 16 32
Number of processors

R
el

at
iv

e 
sp

ee
du

p

Fig. 6. FFT Timing and Speed-up

having 16 cores at 2.10 GHz, and a memory of 256 GB.
The machine was running CentOS 7. We used Python 3.6.3,
OpenMPI 4.0.1, and mpi4py 3.0.2. Each point on Figure 6 is
the mean of a series of 30 measures. The size of the input
list was 218 floating point numbers. The speed-up is a relative
speed-up with respect to the timing for 1 processor. PySke
achieves a good relative speed-up in this case.



V. RELATED WORK

Algorithmic skeletons are, of course, naturally combined
with functional languages. In this context, an algorithmic
skeleton is simply a higher-order function implemented in par-
allel. There are several skeleton approaches available for func-
tional programming languages. For OCaml, OCamlP3L [9]
and its successor Sklml offer a set of a small set data and task
parallel skeletons. Both rely on imperative features of OCaml.
parmap [10] is a lightweight skeleton library that provides
only parallel map and reduce on shared memory machines.
Algorithmic skeletons for OCaml have also been implemented
using the Bulk Synchronous Parallel ML library [11]. The
proposed library is similar to PySke, but PySke has a much
richer set of skeletons. For Haskell, Accelerate is a skeleton
library that targets GPUs only. The initial proposal [12]
featured classical data parallel skeletons (map and variants,
reduce, scan and permutation skeletons) on multi-dimensional
arrays. Both these languages are statically typed languages,
more difficult to learn, and less used than Python.

PySke is related to SkeTo [13], [14], OSL [15], [16], and
Muesli [17], [18], [19]. All these libraries are C++ libraries.
They are, of course, more efficient than PySke, but using them
is less flexible, and requires a higher level of expertise. PySke
contains all the skeletons of OSL but the BSP homomorphism
skeleton [15] and the exception forwarding skeleton [20].
However, now that base infrastructure of PySke is solid,
adding these two skeletons will not be a complex task. PySke
contains additional skeletons on lists with respect to OSL.

Muesli provides a permutePartition skeleton on ar-
rays that is limited to permuting whole partitions. The
permute skeleton of PySke is more fine grained but used
in combination with get_partition, it can implement
the same behavior than Muesli’s permutePartition as
shown by the FFT example. Muesli also offers gathering and
scattering skeletons: they are not derived skeletons as our
scatter and gather skeletons are.

Both compared to OSL and Muesli, PySke has the advan-
tage of providing skeletons on trees. This is a feature shared
with earlier versions of SkeTo, but not with recent ones. PySke
is therefore unique in this respect. SkeTo and Muesli provide
skeletons on 2D matrices in addition to 1D arrays.

VI. CONCLUSION AND FUTURE WORK

Programming with algorithmic skeletons is a productive
way of writing parallel programs. PySke is a simple library for
non-expert programmers, but thanks to its rich set of skeletons,
it is very expressive. Experiments shows performances are
scalable.

We plan to continue adding new skeletons for the existing
PySke data-structures, and new data structures such as multi-
dimensional arrays.

As the set of skeletons offered by PySke grows, PySke
users may find it difficult to choose the right skeleton, and
to rightly compose them. In order to ease the work of PySke
users, we plan to design and implement a mechanism for
skeleton composition optimization by program transformation.

This mechanism will be based on concepts of term rewriting
systems [21], and will be performed at runtime. Preliminary
results on non-automatic transformations showed the potential
of such an approach [6].

REFERENCES

[1] P. Guo, “Python is now the most popular introductory teaching
language at top u.s. universities,” BLOG@CACM, July 2014. [Online].
Available: https://cacm.acm.org/blogs/blog-cacm/176450

[2] M. Cole, Algorithmic Skeletons: Structured Management of Parallel
Computation. MIT Press, 1989.

[3] S. Pelagatti, Structured Development of Parallel Programs. Taylor &
Francis, 1998.

[4] H. González-Vélez and M. Leyton, “A survey of algorithmic skeleton
frameworks: high-level structured parallel programming enablers,” Soft-
ware, Practrice & Experience, vol. 40, no. 12, pp. 1135–1160, 2010.

[5] J. Dean and S. Ghemawat, “MapReduce: Simplified Data Processing on
Large Clusters,” in OSDI. USENIX Association, 2004, pp. 137–150.

[6] J. Philippe and F. Loulergue, “PySke: Algorithmic skeletons for Python,”
in International Conference on High Performance Computing and Sim-
ulation (HPCS). Dublin, Ireland: IEEE, 2019.

[7] L. D. Dalcin, R. R. Paz, P. A. Kler, and A. Cosimo, “Parallel distributed
computing using Python,” Advances in Water Resources, vol. 34, no. 9,
pp. 1124 – 1139, 2011, new Computational Methods and Software Tools.

[8] L. Bougé, The data parallel programming model: A semantic perspec-
tive. Berlin, Heidelberg: Springer Berlin Heidelberg, 1996, pp. 4–26.

[9] R. D. Cosmo, Z. Li, S. Pelagatti, and P. Weis, “Skeletal Parallel
Programming with OcamlP3l 2.0,” Parallel Processing Letters, vol. 18,
no. 1, pp. 149–164, 2008.

[10] R. Di Cosmo and M. Danelutto, “A “minimal disruption” skeleton exper-
iment: seamless map & reduce embedding in OCaml,” in International
Conference on Computational Science (ICCS), vol. 9. Elsevier, 2012,
pp. 1837–1846.

[11] F. Loulergue, “Implementing Algorithmic Skeletons with Bulk Syn-
chronous Parallel ML,” in Parallel and Distributed Computing, Appli-
cations and Technologies (PDCAT). IEEE, 2017, pp. 461–468.

[12] M. M. T. Chakravarty, G. Keller, S. Lee, T. L. McDonell, and V. Grover,
“Accelerating Haskell array codes with multicore GPUs,” in Proceedings
of the POPL 2011 Workshop on Declarative Aspects of Multicore
Programming, DAMP 2011, Austin, TX, USA, January 23, 2011, 2011,
pp. 3–14.

[13] K. Matsuzaki, H. Iwasaki, K. Emoto, and Z. Hu, “A Library of
Constructive Skeletons for Sequential Style of Parallel Programming,”
in InfoScale’06: Proceedings of the 1st international conference on
scalable information systems. ACM, 2006.

[14] K. Emoto and K. Matsuzaki, “An Automatic Fusion Mechanism for
Variable-Length List Skeletons in SkeTo,” Int J Parallel Prog, 2013.

[15] J. Légaux, F. Loulergue, and S. Jubertie, “Managing Arbitrary Distribu-
tions of Arrays in Orléans Skeleton Library,” in International Conference
on High Performance Computing and Simulation (HPCS). Helsinki,
Finland: IEEE, 2013, pp. 437–444.

[16] J. Légaux, S. Jubertie, and F. Loulergue, “Development Effort and
Performance Trade-off in High-Level Parallel Programming,” in Inter-
national Conference on High Performance Computing and Simulation
(HPCS). Bologna, Italy: IEEE, 2014, pp. 162–169.

[17] P. Ciechanowicz, M. Poldner, and H. Kuchen, “The Münster Skeleton
Library Muesli – A Comprenhensive Overview,” European Research
Center for Information Systems, University of Münster, Germany, Tech.
Rep. Working Paper No. 7, 2009.

[18] P. Ciechanowicz and H. Kuchen, “Enhancing Muesli’s Data Parallel
Skeletons for Multi-core Computer Architectures,” in IEEE International
Conference on High Performance Computing and Communications
(HPCC), 2010, pp. 108–113.

[19] F. Wrede, B. A. De Melo Menezes, and H. Kuchen, “Fish school
search with algorithmic skeletons,” International Journal of Parallel
Programming, vol. 47, no. 2, pp. 234–252, 2019.

[20] J. Légaux, F. Loulergue, and S. Jubertie, “OSL: an algorithmic skeleton
library with exceptions,” in International Conference on Computational
Science (ICCS). Barcelona, Spain: Elsevier, 2013, pp. 260–269.

[21] Terese, Term Rewriting Systems. Cambridge University Press, 2003.

https://cacm.acm.org/blogs/blog-cacm/176450

	Introduction
	An Overview of PySke
	A User's Perspective
	An Implementer's Perspective
	Distribution Changing Skeletons

	New List Skeletons
	The distribute Skeleton
	New Derived Skeletons
	The permute Skeleton

	Experiments
	Related work
	Conclusion and Future Work
	References

