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Abstract: The continually increasing size of data implies the need for better computing
techniques. Modern computers are parallel architectures containing several processors.
However, writing parallel programs is not an easy task. Some of the algorithms designed
for sequential data structure can be parallelized using the skeletal parallelism approach.
Algorithmic skeletons are patterns of parallel algorithms, often realized as high-order
functions implemented in parallel, manipulating distributed data structures. This thesis
presents first the Bird-Meertens Formalism, used as a foundation for parallel program-
ming. Secondly, we present the design of PySke, a library of skeletons implementation in
Python. To ensure correctness, some of these skeletons are formalized and proved correct
in the proof assistant Coq. Correct parallel examples are written with Coq and extracted
to be run with BSML, a functional parallel programming implementation of the bulk
synchronous parallel model.

Keywords: Functional programming; parallel programming; bulk synchronous paral-
lelism; formal verification; interactive theorem proving; algorithmic skeletons; Python;
Coq.
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The raise of informatics led to important data analysis challenges especially about
treating large-scale data structures as fast as possible, without negatively influ-
encing the quality of the results. One solution is to use parallel computations to
process several operations at the same time. However, this approach remains dif-
ficult: it is error-prone, and not easy to write. These programs aims at exploiting
parallel architectures, but for that, they need to be explicitly parallel.

In this thesis, we try to answer these challenges. Our purpose is to give a
solution to remove errors from parallel programs. More generally, we also try to
answer the question: How to ease parallel programming for all developers?

In this chapter, we first introduce the advantages but also the challenges of
parallel programming (Section 1.1). One difficulty is to maintain a parallel pro-
gram correct. There exist different techniques presented in Section 1.2. Finally, we
describe our contributions to tackle some of the difficulties of a parallel approach
(Section 1.3).
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Chapter 1. Introduction

Parallel programming

Nowadays, informatics is everywhere: on your computer, on your smart-
phone, even where you do not expect like your TV and your car. Many processes
are executed in all your devices, allowing automatic systems and faster decisions.
From devices, pieces of information are collected to be exploited (e.g., statistical
analysis). However, since digital devices are increasingly used, the quantity of
data upsurges. Capturing, curating, and managing huge amount of data within
a decent elapsed time is a challenging task.

The science of large-scale study is called Big Data. It represents a relative
amount of data around key concepts: volume; how to treat huge amount of data;
variety; the data are from different sources not necessarily structured or orga-
nized; and velocity; how to reach a decent speed of computation. The word rela-
tive is used because the quantification behind Big varies depending on users, and
the tools they have. For example, reading a terabyte of data with an old machine,
with slow resources, is more challenging than doing the same operation with a
very modern computer. Nonetheless, performance expectations must be realistic.
For sure, we cannot expect that the old machine performs this operation in a
few seconds but increasing the speed of calculation remains a Big Data problem.
The term Big can be then understood as to large, with a relationship between
resources, the size of data, and possible improvements.

Once the data are organized, they are stored into different data structures that
are numerous (e.g., arrays, lists, graphs or trees). The chosen one depends on
the properties we want to maintain (e.g., hierarchy in a tree). Although having
organized data helps for their comprehension, their treatment remains a hard
task. Naively, very inefficient programs can be written but a challenge behind Big
Data is to compute as fast as possible. We need to find better approaches with
related implementations and well-suited architectures to meet this challenge.

The evolutions of hardware and software have been related since the begin-
ning of computer science. New hardware components can improve the perfor-
mance of software. Continuous improvement of hardware is therefore necessary.
One basic idea to increase computation speed is to use several processing units.
It leads to parallel computing, a kind of computation which processes several
calculations at the same time. It aims at getting faster results. The comparison
between the performances of a sequential program and its parallel counterpart
can be evaluated with mathematical formula [3, 60]. In theory, multiplying the
number of processors by a value for a task should divide the computation time

2



1.1. Parallel programming

by the same value. It is almost never true, especially when inter processing units
communications are needed.

Parallel computers have existed from the early ages of computing but the
first ones were not designed for a personal use. It is thanks to the apparition
of multicore microprocessors that the personal computers are now able to do
parallelism. This technology is henceforth pervasive, and all the processors are
now parallel.

In this thesis, we aim at targeting large-scale applications that require large-
scale machines both in terms of processing units, but also in terms of memory.

Architectures and models
In the modern computer science world, system architectures are described us-
ing Flynn’s taxonomy [48]. It represents computer architectures with four ap-
proaches:

• Single Instruction Single Data (SISD) corresponds to a uniprocessor
model. The data are treated one by one, in sequential order. This archi-
tecture is also known as the Von Neumann architecture [124].

• In a Single Instruction Multiple Data (SIMD) architecture, one operation
is applied to several data. Most of the modern processors use SIMD by a
vectorial approach. Single Program Multiple Data (SPMD) is a variant of
this approach. It is very similar so that these two approaches are not mutu-
ally exclusive. SPMD is a much higher level of abstraction. The processors
operate on different subsets of the data, but different operations may be
applied at the same time.

• Multiple Instruction Single Data (MISD) applies successive treatments
to data. This category is usually associated with pipelines and numerical
filtering.

• Multiple Instruction Multiple Data (MIMD) is the most used parallel ar-
chitecture. It is composed of calculation units with their data to treat. In
other words, treatments are entirely independent. This architecture can be
used with two types of memory:

– Different programs at the same time can access the shared memory.
Languages provide libraries to do shared memory parallelism, such as

3



Chapter 1. Introduction

the Pthreads library in C [110]. This architecture has, however, limita-
tions. All the Central Processing Unit (CPU) cores access to the mem-
ory with a shared bus, which represents an obvious concurrency issue.
Critical sections must be defined, and the memory accesses must be re-
stricted.

– With a distributed memory, each processor has its private memory
and is the only which can access to its data. Concrete communications
must operate the exchange of information between processors (e.g.,
using Message Passing Interface (MPI)). More details about program-
ming with a distributed memory are given in Chapter 4.

In this thesis we target distributed memory machines for large-scale ap-
plications, even though smaller scale shared memory systems are also of
interest since they are easy to use.

Modern computers contain all of these architectures but at different levels of their
overall architecture.

Parallel programing: An imperfect approach

Parallel approaches sound to be a good strategy for Big Data problems. It is now
mainstream, and through language libraries, every developer can take advantage
of the full resources of a machine. However, it remains a complex solution. First
of all, it is not natural for programmers to think with a parallel approach. To scale
a parallel program, several constraints must be considered: the distribution of the
data, the dependence between the processes, the communication in a distributed
memory system, the access to shared data (critical sections) in a shared memory
system, and so on. On a sequential program, every instruction is surrounded by
a prior and a consequent machine state. With the non-determinism of parallel
programming, it is harder to predict the state of a machine at a specific time.
The consequence of the difficulty to write parallel programs is a lack of parallel
programmers and programs remain error-prone.

There exist compilers that can do automatic parallelization of sequential pro-
grams. However, because the compiler must be designed for a vast spectrum
of cases, the resulting parallel programs can lose efficiency compared to hand-
made parallel programs. (e.g., nested loop structures with statically determined
iteration counts).
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1.2. How to write correct programs

How to write correct programs

Error detection is a part of integrated development environments (IDEs) or
compilers. By analyzing the source code, these tools can detect problems such as
non-initialized variables, type errors, or the use of non-existing functions. How-
ever, runtime errors cannot be identified as easily. All C programmers have met
the Segmentation Fault error and looked for the cause of the failure during
hours to finally fix it.

Before starting programming, program requirements must be defined on a
document called the specification. A correct program is a program that respects
its specification; that is the program exactly does what it is expected to do.

Correctness is then a representation of a quality level. A weak notion of cor-
rectness is the absence of runtime errors, and a strong one is that a program
always returns expected output. A program is never perfect in the first draft.
Indeed, small errors that are only detected after the first execution (e.g., index
errors) are often made. Even experienced programmers must debug their algo-
rithms. There exist several methods for bug detection with associated techniques
and tools.

The first method, called testing, presented in section 1.2.1 is used at different
levels of a program conception to ensure that the program is correct for particular
cases. It checks if, for specific parameters, a program returns the expected result.
There are many mathematically-based and logic-based methods to improve the
quality of software, referred as formal methods. The detailed methods in this
thesis aim to verify that properties hold for all possible executions. This verifi-
cation can be divided into two categories: a posteri verification and correctness by
construction. They are respectively presented in section 1.2.2 and section 1.2.3.

Tests and Quality

The functional specification of a program characterizes the output produced for
all possible inputs. More precisely, the program behavior must respect a series
of requirements, that can be formal (defined by mathematical terms) or informal
(text in a natural language and possible graphical information in an informal or
a semi-formal notation). The expected behavior may be even more specific with,
for example, a description of the complexity and the efficiency of the program.
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Chapter 1. Introduction

Figure 1.1 – Traditional waterfall model for software conception: the V-model [46]

V-model

In industry, the test technique has evolved through the years. The V-models
(sometimes written V-modells) are very old-fashioned waterfall models [46].
For each step of conception, the work product is tested following different and
specific techniques: analysis, demonstration, inspection, and finally testing. V-
models are composed of two sides:

The left one is a descending side which describes the users needs with dif-
ferent levels of precision into small pieces. Concerning the right one, the corre-
sponding tests are defined according to the tested pieces. The programming part
is determined by the coding section and its associated unit tests. Each function,
or procedure, is individually tested with different inputs. The results of the tests
are a set of a couple of input-output. Regarding these results, we can accept, or
reject, that the program respects its specification. Figure 1.1 from [46] illustrates
this model.

The classical V-model has been derived into three other models, giving more
details about each production step:

• The single V-model represents the work products rather than developed
activities.

• The double V-model specifies the type of tests for each conception step.

• The triple V-model describes the importance of each acceptance step.
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1.2. How to write correct programs

The main cons with tests are their specificity. On one hand, it is straightfor-
ward and natural to write and execute tests. On the other hand, it only verifies
the quality of the program for specific cases. In other words, tests do not cover
all the possibility of execution. According to Edsger W. Dijkstra [16],

Program testing can be used to show the presence of bugs,
but never to show their absence.

Formal methods will be preferred to verify the correctness of a program for all
possible inputs and execution.

Modern software development techniques

In modern software developments, different methods are used to get quality con-
trolled applications. They are classified as Agile methods and are based on a sys-
tems development life cycle. The work in Agile methods is based on iterations of
small increments that minimize the amount of planning and design devices of an
application. Contrary to waterfall models, where the build phase and the testing
phase are separated, the development testing is completed in the same iteration
as programming. That is, an increment is both a software component and related
tests. More specifically, the test-driven development consists of writing the tests
focused on requirements before writing the code. Another Agile approach rela-
tive to tests is continuous integration. With this practice, all the tests are run at
each modification of the source code to check the absence of regression.

A posteri verification

In a posteri verification, the specification and the program are written indepen-
dently. When they are both finished, a proof of correspondence is made to en-
sure the correctness of the program. The usual approach for doing this kind of
verification is by using a deductive system, also called deductive inference. It
consists of the use of axioms, or inference rules, defined in a semantic [111] to
prove properties at a specific moment of the execution of a program. The most
used formal system is the Hoare logic [66, 67], inspired by Floyd’s works on
flowcharts [47]. Hoare logic is based on Hoare triples describing a state of the
computation. They are defined by {P}C{Q} where P and Q are assertions and C
a command to execute. P are the valid assertions before the execution of C and
are called the preconditions while Q are the valid assertions after, and are called
the postconditions. This logic can be naturally applied to most of the sequential
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Chapter 1. Introduction

imperative programs. There exist tools to support this kind of verification for the
languages, such as Frama-C for sequential C Programs [119].

By construction
In correctness-by-construction, the specification is written first and then trans-
formed step-by-step into an efficient executable program. Each transformation
is proved correct. In other words, the previous and the new models are shown
equivalent. For example, the Bird-Meertens Formalism (BMF) (also called Squig-
gol) [6, 9, 52, 105] is a calculus that provides rules of equivalence between stan-
dard primitives on data structures to get a more efficient program. Program cal-
culation, in particular of functional programs [8, 54], is a style of reasoning of
correctness-by-construction. Proofs assistants [118] are well suited to conduct pro-
gram calculation reasoning on functional languages [125]. The Coq [126] frame-
work SyDPaCC [92] has been designed for correctness-by-construction with a skele-
tal approach [25] for parallel programming. There also exist similar methods for
imperative languages such as the B-method [17], which models the abstract spec-
ification of a program to obtain a concrete C or Ada executable program.

Other approaches

There are tools that support different kinds of verification style. CompCert, for
example, is a verified compiler for C programs [78, 74]. It has been proved that
CompCert generates executable code that behaves exactly as described by the
source program. Operating system architectures, called kernels, are subject to
verification. The microkernel seL4 is an example of an operating-system kernel
that has been proved correct [103]. The verification ensures that the system is free
of implementation bugs (e.g., deadlocks or buffer overflows).

As mentioned previously, SyDPaCC has been designed for correctness-by-
construction. The provided functions of the algorithm allows for users to obtain
correct parallel functions by construction. However, the construction of the frame-
work is firstly made a posteri. Parts of this framework are built using already de-
fined components to construct new terms, correct by construction. More details
about how are constructed SyDPaCC terms are given in Section 2.4 of Chapter 2,
and in Chapter 3.

8



1.3. Contribution and organization

Contribution and organization

The contribution presented in this thesis is decomposed into two parts. First,
we propose an extension of SyDPaCC, that already provides correct skeletons on
lists, to cover parallel programs on trees. A skeleton is a notion introduced by
Murray Cole [25]: it is a parallel implementation of a computation pattern. Using
this approach, a developer does not have to think about parallelization anymore
but only on how to write a program using these specific patterns. Using SyD-
PaCC, programmers are able to write correct parallel programs without taking
care of parallel aspects. However, SyDPaCC is a Coq framework and Coq is not
easy to use.

Beyond the importance of formal verification, easing the writing of parallel
programs remains an important task. Then we propose PySke, a Python API
that allows writing parallel programs on two different data structures. It covers
parallel programming on lists but more importantly on trees, that are not often
represented on already existing skeletons API. PySke takes advantage of Python
to mainly increase programming productivity. It is indeed convenient to write
skeletons in Python since lambda expressions are part of the language.

The thesis is organized as follows. Chapter 2 gives all the technical prelimi-
naries needed to understand this document. It includes more details about BMF,
Coq, BSML, and the construction of SyDPaCC for lists. In Chapter 3, we describe
an extension of SyDPaCC for trees. Chapter 4 details PySke , a library of skeletons
written in Python. Examples that can be written with skeletons are presented in
Chapter 5. This Chapter also provide results of experiments on the presented ex-
amples on two parallel machines. We finally conclude and present future work
in Chapter 6.
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In this chapter we present various conceptual and software tools to ease the
reading of the contribution chapters. First, I begin to present in more details
the Bird Merteens Formalism (Section 2.1). We describe here several techniques
based on equivalences and theorems to optimize and automatically parallelize
programs. Then functional parallel programming with Bulk Synchronous Parallel
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ML (BSML) is introduced in Section 2.2. An overview of the Coq proof assistant
– that I used to implement and prove the correctness of functions manipulating
several representations of trees – is given in Section 2.3. This chapter ends with
a presentation of SyDPaCC a library for Coq that supports reasoning on parallel
functional programs, an in particular BSML programs, in a way that provides an
automatic parallelization mechanism within Coq (Section 2.4). The contributions
I describe in Chapter 3 are part of an extension to SyDPaCC.

Bird-Meertens Formalism (BMF)

The construction of categorical data types addressed software and perfor-
mance issues in parallel programming [120, 68, 27]. The BMF describes a calculus
for the construction of programs. It can be decomposed into several parts: nota-
tions, theorems, primitives, and transformations. The remaining of this section
gives an overview of BMF on lists, and some-linear structures.

Notations

Type

To denote than an element a has type A, we write a : A. A tuple is defined with
the composition of several types. For example, the type of a pair of an A element
defined by a, and an element b of type B is given by (a, b) : A × B.

Functions

The notation of functions is derived from lambda calculus and are defined with
a functional style. Then the application of a function f to an element a is written
f . a or more simply f a in functional languages. A function is also considered as
an element of the formalization and then has a type. A function f which takes
an argument of type A and returns an element of type B is typed f : A → B. By
convention, we use lambda notation to give the core of an anonymous function.
A function that associates the input x to the expression e is written λx.e. The ML
syntax denotes the same function by λx ⇒ e. For readability, we will be kept
this one for the rest of the paper. We also introduce pattern matching for the
parameters of functions. For example, a function that takes a tuple as argument
will be written λ(a, b)⇒ e, and typed A × B→ E with A (resp. B) the type of a
(resp. b), and E the type of the returned expression.
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To successively apply several functions to an entry, we use composition. The
composition of two functions f and g is denoted by f ◦ g and is defined by
( f ◦ g) a = f (g a). In functional programming, f g a 6= f (g a). f g a
represents a function that takes as input two arguments: g and a. Considering
B → C the type of g and A the type of a, f has the following type: (B → C) →
A → E, with E the type of the returned expression. In this case, f g represents
a partial application. f g is now a function that takes as argument a variable of
type A and returns an expression of type E. This technique is called currying.
Uncurrying is its dual transformation. For example, the uncurried version of f
defined previously would have the type ((B→ C)× A)→ E.

The tupling operation consists on creating a tuple from a set of functions.
Each function will be applied to the same parameter and as a result we obtain a
tuple of subresults: f4g = λx ⇒ ( f x, g x). The pairing operation works on a
similar way but instead of having one input, we have an input for each function.
Each function will be applied to its corresponding input. The tupling denoted by
× is defined by ( f × g) (x, y) = ( f x, g y).

Usual functions

First of all, the id function defined by id = λx ⇒ x. There are also functions
to handle tuples, especially the pairs. To make a projection of the first element
(resp. the second element) of a pair we use the function f st (resp. snd) defined
by f st(a, b) = a (resp. snd(a, b) = b).

Binary Operators

The BMF simplifies the use of binary operators by infix operators. By convention,
they are written with⊕,⊗ or other similar symbols. x⊕ y is equivalent to (⊕) x y.
More than simplify the notation of the operation, the infix operators allow an
order in the application by sectioning the application. Indeed, the operators are
not necessarily symmetric. That is, x⊕ y is not necessarily equal to y⊕ x. Suppose
that⊕ : A× B→ C, we can define the ’left section’ by (a⊕) : B→ C and the ’right
section’ by (⊕b) : A→ C. Thus we have the equality: (a⊕) b = (⊕b) a = a⊕ b.

Inverse

The inverse of function f , denoted by f−1, is a function satisfying f ◦ f−1 =
f−1 ◦ f = id. The right inverse of f , denoted by f ◦, satisfies f ◦ f ◦ ◦ f = f . It is
important to notice two things about right inverses. Firstly, there exists a right
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inverse for any function. Worrying about its existence is then unnecessary [109].
Secondly, a right-inverse of a function is not unique. f ◦ denotes one among the
possible right inverses of f

Proof

A proof in BMF is constructed step by step using hypothesis and definitions as
justifications on each step. The justifications are written in curly brackets, and a
proof of equivalence between an original specification and a final version is as
written below.

Proof. original specification = final version
original specification

= { justification for the first step }
transformed version

= { justification }
...

= { justification for the final step }
final version

The square marks the end of the proof.

Lists

A list is an homogeneous sequence of values of the same type. A list of elements
of type A is defined by the type List A.

In the BMF tradition, join-lists are lists built using three constructor: the empty
list [ ], a singleton [a], and the concatenation of two lists xs++ ys. As we will
explain in Section 2.1.3, join-lists are well-suited for parallelism.

In this formalization of lists, ++ is assumed to be an associative operation,
and [ ] is its left and right identity, or in short the set of lists, ++ , and [ ] form a
monoid:

Definition 2.1.1 (Monoid) A set A, a binary operation ⊕ on A, and a element ι⊕ form
an algebraic structure called a monoid if:

• ⊕ is associative: ∀x y z, (x⊕ y)⊕ z = x⊕ (y⊕ z),

• ι⊕ is both a left and right identity for ⊕:
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– ∀x, ι⊕ ⊕ x = x

– ∀x, x⊕ ι⊕ = x

Having these properties mean that in this formalization there is no unique
representation of a given list built using only constructors. In modern functional
programming languages such a OCaml and Haskell, new data types can be de-
fined by enumerating their constructors. In this context however, for a given list
there is a unique representation of the list in terms of constructors. While it is
possible to support formal reasoning in Coq following the BMF join-list style, it
is much more convenient to adopt the functional programming perspective, in
particular because ultimately the goal is to obtain functional parallel programs.

Therefore, we will rather use cons-lists, i.e. lists built using too constructors:
[ ] and :: (also named cons). In the join-list view, cons can be defined as: x :: xs =
[x] ++ xs. In the cons-list view, ++ can be defined as follows:

[ ] ++ ys = ys (2.1)
(x :: xs) ++ ys = x :: (xs++ ys) (2.2)

Lemma 2.1.2 For all type A, List A, ++, and [ ] form a monoid.

Proof. Three properties must be proved: [ ] is left neutral, [ ] is right neutral and
++ is associative.

1. [ ] is left neutral (∀ ys, [ ] ++ ys = ys):

True by definition of ++

2. [ ] is right neutral (∀ ys, ys++ [ ] = ys):

This proof is made by induction. In other words, we consider two cases:

• Basic case: ys = [ ]

[ ] ++ [ ] = [ ] is true by definition.

• Inductive case: ys = x :: xs
We set the induction hypothesis: xs++ [ ] = xs.

(x :: xs) ++ [ ]
= { definition of ++, case (2.2) }

x :: (xs++ [ ])
= { induction hypothesis }

x :: xs
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3. ++ is associative (∀ xs ys zs, (xs++ ys) ++ zs = xs++ (ys++ zs)):

This proof is made by induction. We have two possible cases for xs:

• Basic case: xs = [ ]

([ ] ++ ys) ++ zs
= { definition of ++, case (2.2) }

ys++ zs
= { definition of ++, case (2.1) }

[ ] ++ (ys++ zs)
We proved s∀ xs ys zs, xs = [ ]⇒ (xs++ ys) ++ zs = xs++ (ys++ zs).

• Inductive case: xs = x0 :: xs0

We set the induction hypothesis: (x0 ++ ys) ++ zs = x0 ++ (ys++ zs).
((x0 :: xs0) ++ ys) ++ zs

= { definition of ++ }
(x0 :: (xs0 ++ ys)) ++ zs

= { definition of ++ }
x0 :: ((xs0 ++ ys) ++ zs)

= { induction hypothesis }
x0 :: (xs0 ++ (ys++ zs))

= { definition of ++ }
(x0 :: xs0) ++ (ys++ zs)

As already seen for function ++, to write a function on lists, each case of
construction must be considered. For example, a definition of map is:{

map f [ ] = [ ]
map f (x :: xs) = (f x) :: (map f xs)

map is a very common primitive on data structures. Another one is reduce.
Considering an associative operation ⊕ and its neutral element ι⊕, reduce can be
informally defined as follow:

reduce (⊕) [x1; x2; . . . ; xn] = ι⊕ ⊕ x1 ⊕ x2 ⊕ . . .⊕ xn

We introduce two other primitives called scan and its reverse version rscan.
The scan operations on lists, scan and rscan, takes an associative operation ⊕
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with its neutral element ι⊕, and a list. Informally, these two functions are defined
as follows:

scan (⊕) [x1; x2; . . . ; xn] = [ι⊕; ι⊕ ⊕ x1; . . . ; ι⊕ ⊕ x1 . . .⊕ xn−1]
rscan (⊕) [x1; x2; . . . ; xn] = [x2 ⊕ . . .⊕ xn; x3 ⊕ . . .⊕ xn; . . . ; xn; ι⊕]

The last common general primitive on lists is map2 defined by:

map2 f [x1; x2; . . . ; xn][y1; y2; . . . ; yn] = [ f (x1, y1); f (x2, y2); . . . ; f (xn, yn)]

However, the more specific zip is often used on lists. It is just a particular case of
map2 where f (x, y) = (x, y).

zip [x1; x2; . . . ; xn][y1; y2; . . . ; yn] = [(x1, y1); (x2, y2); . . . ; (xn, yn)]

Program transformations and parallelism

The most important thing about BMF is the program equivalences it pro-
vides [52, 6]. These equivalences, proposed as theorems, aims at facilitating par-
allel implementations of programs. In a naive and inefficient algorithm, specific
classes of function can be detected and successively transformed into a more
efficient combination of BMF terms. Using BMF and its primitives written as
high-order functions allow generic definitions, both of the primitives and their
parallel implementations. It makes possible the definition of a larger spectrum of
programs.

Equivalences for optimizations

Equivalences provided by BMF aims at optimizing programs. For example, con-
sidering two functions f and g, it is more efficient to compute map( f ◦ g) than
(map f ) ◦ (map g). In the first case, we just go though the list once, while we do
it twice in the second one.

Other examples show equivalences between compositions of different func-
tions. Considering ∀ f g ⊕, ( f ⊕ ˆg) x = ( f x) ⊕ (g x), the following equality
holds:

((reduce (⊕)) ◦ (map f ))⊕ ˆ((reduce (⊕)) ◦ (map g)) =
(reduce (⊕)) ◦ (map ( f ⊕ ˆg))
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In this example, the right part of the equality uses two times less primitives and
does not need a final use of ⊕. We can expect better performances for a program
written using the right part than the left one.

Cases can be more context dependent and can take advantage of algebra. For
instance, considering booleans by true and f alse, and the functions not, or, and
and, we have the following equivalence.

not ◦ (reduce or) = (reduce and) ◦ (map not)

In this case, the composition of map and reduce is obviously less efficient since we
need to browse the list twice.

Theorems of equivalence

Finding specific patterns that can be transformed as compositions of BMF prim-
itives is also very interesting for parallelization. Since these primitives can be
implemented in parallel, programs can automatically be parallelized. In other
words, if we can find an equivalence between the specification of a program and
a composition of terms which have a parallel implementation, then this program
be automatically parallelized. We present first an example of transformation fol-
lowing our instinct. Nonetheless, some theorems exist for automatic transforma-
tions such as the diffusion theorem and homomorphism theorems. The following
paragraphs give details of these notions.

Example of composition: the MPS problem

An example of applications writable with BMF primitives is the Maximum Prefix
Sum (MPS) problem. A prefix sum requires the binary associative operator (+),
and a non-empty list l. Indeed, it doesn’t make any sense to compute prefixes of
an empty list, and even less a maximum among them. A sequential implementa-
tion to solve this problem can be written as follows.

mps l = mps′ l (−∞) 0
with mps′ [ ] max acc = max

mps′ (x :: xs) max acc = mps′ xs (max ↑ (acc + x)) (acc + x)
and a ↑ b = if a ≥ b then a else b

However, this program is not well-suited for parallelism. The computation of
such a program can be split into three parts following the definition of the prob-
lem. First, all the possible prefixes must be listed. Secondly, for each prefix, the
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sum of elements must be calculated. Finally, the program returns the maximum
among the sums. We define one function for each step: prefix that calculates all
the possible prefixes of a list, sum that computes the sum of elements of a list,
and maximum to get the maximum value among a list. sum and maximum are
functions that can be expressed using reduce. Indeed, sum = reduce (+) 0 and
maximum = reduce (↑) (−∞).

prefix is a recursive function that can be defined using map as follows.

prefix [ ] = [[ ]]
prefix x :: xs = [ ] :: (map (cons x) (prefix xs))

with cons x = λ xs⇒ x :: xs

We now have all the keys to writes a program that solves the MPS problem
using BMF primitives.

mps = maximum ◦ (map sum) ◦ prefix

From this definition close to the informal functional specification, and using a
distributed list with parallel implementations of the primitives, we obtain a par-
allel implementation of a program to solve the MPS problem.

It is interesting to compare the complexity of the two algorithms. The first
one’s is largely better than the second one’s in a sequential view. However, the
second one provides an easy automatic parallel implementation. With enough
processors, and a large dataset, we can expect better performances with the par-
allel approach than the sequential one.

Diffusion Theorem

The diffusion theorem [70] states that a recursive function using an accumulative
parameter can be transformed into a composition of the functions map, reduce,
scan, and zip. A function h, with ⊕ and ⊗ two associative operators, defined with
the following recursive function:

h [ ] c = g c
h(x :: xs) c = p(x, c) ⊕ ( h xs (c⊗ q x))

can be transformed into:

h xs c = (reduce (⊕) (map p as)) ⊕ (g b)
with bs++ [b] = map (c⊗) (scan (⊗) (map q xs))
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Homomorphism Theorems

Definition 2.1.3 (Homomorphism) For a binary operator�, a function h on lists is said
�-homomorphic iff, for all x and y, the following equality holds: h(x++ y) = h x� h y.

For an associative operator � and its unit ι�, an homomorphic h is written
h = hom (�) f and can be described by

h [ ] = ι�
h [a] = f a

h (x++ y) = h x� h y

The functions sum and maximum presented in paragraph 2.1.3 can be ex-
pressed as homomorphisms as follows.

sum (x++ y) = sum x + sum y
⇒ sum = hom (+) id

maximum (x++ y) = maximum x ↑ maximum y
⇒ maximum = hom (↑) id

Definition 2.1.4 (Leftwards and rightwards functions) A function f on lists is called a
leftwards function if there exists a binary operator ⊕ such that

∀a x, f ([a] ++ x) = a⊕ ( f x)

Symmetrically, a function g on lists is called a rightwards function if there exists ⊗ such
that

∀a x, g (x++ [a]) = (g x)⊗ a

Theorem 2.1.5 (The first homomorphism theorem) Every homomorphism can be writ-
ten as the composition of map and reduce:

∀h f �, h = hom (�) f
⇒ h = (reduce(�)) ◦ (map f )

Theorem 2.1.6 (The second homomorphism theorem) Every homomorphism is both a
leftward and a rightward function. In other words, an homomorphism is a function that
computes a list both from left to right or from right to left.

These two theorems lead to the third homomorphism theorem [53].
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Theorem 2.1.7 (The third homomorphism theorem) A function h is a list homomor-
phism iff there exist two binary operators ⊕ and ⊗ such that:

h([ ]) = ι�
h([a] ++ x) = a⊕ (h x)
h(x++ [a]) = (h x) ⊗ a

If we can compute an homomorphism in both leftward and rightward man-
ners, then there exists a divide-and-conquer algorithm to evaluate the function.
It results the following lemma [53, 109]:

Lemma 2.1.8 For a given function h, and two binary operators⊕ and⊗, if the following
equations hold for all a and x:

h([a] ++ x) = a⊕ (h x)
h(x++ [a]) = (h x) ⊗ a

Then h = hom (�) φ where � and φ are defined as follows for all a, x, and y.

φ a = h [a]
x� y = h (h◦ x++ h◦ y)

Homomorphism theorems have been shown useful in the development of
parallel programs [10, 26, 27, 53, 68, 69].

If a candidate function h can be expressed both as a leftwards and a right-
wards function, then h is an homomorphism (theorem 2.1.7). Thanks to the first
homomorphism theorem (theorem 2.1.5), h can be written as a composition of
map and reduce. Now, we can use parallel versions of these primitives on a paral-
lel implementation of lists.

MPS revisited with homomorphism theorems The homomorphisms theo-
rems and the procedure for optimization can be applied to the MPS problem. A
naive composition of functions to parallelize a program solving the MPS problem
has been previously given as follows.

mps = maximum ◦ (map sum) ◦ prefix

We have already defined maximum and sum as homomorphisms.
To apply the third homomorphism theorem, we need to show that mps can

both be represented as a leftwards and a rightwards function.
The first sum of prefix being the value of the single first element, it is easy to

find ⊕ such that mps is a ⊕-leftwards function.

21



Chapter 2. Preliminaries

a⊕ b = 0 ↑ (a + b)⇒ mps([a] ++ x) = 0 ↑ (a + mps x)

The second step consists on finding ⊗ such that mps is a ⊗-rightwards function.
There is no obvious solution for

mps(x++ [a]) = (mps x)⊗ a

Keep the already accumulated sum looks necessary for defining ⊗. We notice
that the paired function ms such that ms = mps4sum is both leftwards with
a ⊕ms (xm, xs) = (0 ↑ (a + xm), a + xs), and rightwards with (xm, xs) ⊗ms a =
(xm ↑ (xs + a), xs + a. The third homomorphism is then applicable to ms. From
the lemma 2.1.8, ms, there exist � and φ such that ms = hom (�) φ with

φ a = ms [a]
x� y = ms (ms◦ x++ms◦ y)

We first define φ a by

φ a = (mps [a], sum [a])
= (0 ↑ (a + mps [ ]), a)
= (0 ↑ a, a)

To define �, we need to specify a right inverse of ms. As a solution: ms◦ (m, s) =
[m; s−m].

Proof.

∀x, ms(ms◦(ms x)) = ms(ms◦(mps x, sum x))
= (mps4sum) [mps x; (sum x)− (mps x)]
= (mps [mps x; (sum x)− (mps x)],

sum [mps x; (sum x)− (mps x)])
= (mps x, sum x) = ms x

We now can define � for all xm, xs, ym, and ys.

(xm, xs)� (ym, ys) = ms(ms◦ (xm, xs) ++ms◦ (ym, ys))
= ms [xm; xs − xm; ym; ys − ym]
= (mps [xm; xs − xm; ym; ys − ym],

sum [xm; xs − xm; ym; ys − ym])
= (0 ↑ xm ↑ (xs + ym), xs + ys)

Using the thirst homomorphism theorem, we have:
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ms = (reduce (�)) ◦ (map f )

By deduction, and the definition of ms, we finally get an efficient version of mps
by

mps = f st ◦ (reduce (�)) ◦ (map f )

Trees
Graph calculus is not defined in BMF. However, the calculus defined on lists
has been extended to trees. Trees are particular kind of graphs, often used in
representing structured data such as organigrams or XML documents. They are
acyclic graphs satisfying the following properties:

1. There is exactly one vertex with no entering edges, called the root;

2. All the vertices that are not the root have exactly one entering edge;

3. There exists a path from to root to all the other vertices.

A technique to reduce a graph into a tree has been introduced in [133] but
here we are only considering already-defined trees and more particularly binary
trees.

Binary Trees

Binary trees are non-homogeneous and non-linear structures. There are two ways
of building tree: Lea f (a) represents a tree with only one leaf that contains a value
a, and Node(b, l, r) represents a node built using a value b and two binary trees l
and r . The values at the leaves should have the same type α, while the values at
the nodes should have the same type β. In this case, the type of the binary tree is
denoted with BTree α β.

As the functions on lists, functions on trees are defined considering each case
of construction. The primitives are pretty similar. For example, the map function
is defined by:{

map kL kN Lea f (a) = Lea f (kL a)
map kL kN Node(b, l, r) = Node(kN a, map kL kN l, map kL kN r)

The map function on trees takes two functions: kL, applied to the values at the
leaves, and kN, applied to the values at the nodes. The other traditional function,
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reduce, can be defined in the same way on binary trees.{
reduce k Lea f (a) = a
reduce k Node(b, l, r) = k(reduce k l)b(reduce k r)

map and reduce are enough for solving easy problems. For instance, the size
of a tree can be calculated as follows.

size = reduce (+) ◦ map (λx ⇒ 1) (λx ⇒ 1)

The scan function on lists is derived into two accumulation functions: the
upwards and downwards accumulations respectively defined by uAcc and dAcc.

uAcc is similar than reduce but has the particularity of preserving the tree
structure as a result.

uAcc k Lea f (a) = Lea f (a)
uAcc k Node(b, l, r) = Node(b′, uAcc k l, uAcc k r)

with b′ := reduce k Node(b, l, r)

dAcc takes three arguments in addition to the input tree:

• gL proceeds the accumulation to the left children of a node;

• gR proceeds the accumulation to the right children of a node;

• c the current accumulated value.
dAcc gL gR c Lea f (a) = Lea f (c)
dAcc gL gR c Node(b, l, r) = Node(c, l′, r′)

with l′ := dAcc gL gR gL(c, b) l
and r′ := dAcc gL gR gR(c, b) r

For example, these accumulative primitives can be used for numbering tree
elements with a prefix traversing order as follows.

prefix = dAcc (λ(c, (bl, bs))⇒ c + 1) (λc, (bl, bs)⇒ c + bl + 1)
◦ uAcc (λ((ll, ls), b, (rl, rs))⇒ (ls, ls + 1 + rs))
◦ map (λx ⇒ (0, 1)) (λx ⇒ x)

Two other convenient functions, root and setroot, are used in binary tree cal-
culation.

root Lea f (a) = a and setroot Lea f (a) v = Lea f (v)
root Node(b, l, r) = b setroot Node(b, l, r) v = Node(v, l, r)
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map f RTree(v, ch) = RTree( f (v), [map f t | t ∈ ch])
reduce (⊕) (⊗) RTree(v, ch) = v ⊕ Σ⊕[reduce (⊕) (⊗) t | t ∈ ch]

uAcc (⊕) (⊗) RTree(v, ch) = RTree( reduce (⊕) (⊗) RTree(v, ch),
[uAcc (⊕) (⊗) t | t ∈ ch])

dAcc (⊕) c RTree(v, ch) = RTree(c, [dAcc (⊕) (c⊕ v) t | t ∈ ch])
lAcc (⊕) RTree(v, ch) = let rs := rscan (⊕) [root t | t ∈ ch]

in RTree(ι⊕, [setroot (lAcc (⊕) ti) ri| t ∈ #ch])
rAcc (⊕) RTree(v, ch) = let rs := scan (⊕) [root t | t ∈ ch]

in RTree(ι⊕, [setroot (rAcc (⊕) ti) ri| t ∈ #ch])

Figure 2.1 – Primitives for RTree.

Rose Trees

The nodes on real trees don’t have necessarily two children. In this case, a tree
with an arbitrary shape is called a rose tree [106]. They are used in many scientist
domains such as statistics with Bayesian clustering [21]. Contrary to binary trees,
there is only one way to create a rose tree, using the RTree(v, ch) with v the value
contained in the current node, and ch a list of RTree corresponding to the children
of the node. The functions root and setroot are also defined on rose trees.

root RTree(v, ch) = v
setroot RTree(v, ch) v1 = RTree(v1, ch)

The definitions of primitives on rose trees are defined in Figure 2.1.
However, it is not very convenient to manipulate a tree with an unknown

shape. With binary trees, we know that each node has exactly two children. We
define two functions for transforming trees: r2b transforms a rose tree into a
binary tree and is described by

r2b t = r2b′ t [ ]
r2b′ RTree(a, ts) ss = Node(a, r2b′′ ts, r2b′′ ss)

r2b′′ [ ] = Lea f (_)
r2b′′ t :: ts = r2b′ t ts

while b2r does the inverse operation

b2r t = head(b2r′ t)
b2r′ Node(l, b, r) = RTree(n, (b2r′ l)) :: b2r′ r

b2r′ Lea f (a) = [ ]
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These two functions respect b2r ◦ r2b = id. We show in the Section 4.3.4 how
these transformations can be used to write skeletons on rose trees. An example
of transformation is presented in Figure 2.2.

Figure 2.2 – Example of RTree transformation into a BTree

Diffusion on Trees

The diffusion theorem can be generalized to binary trees. If h is a function on
binary trees defined with the following recursive way

h Lea f (a) c = k1(a, c)
h Node(b, l, r) c = k2(b, c)⊕ (h l (c⊗ g1 b))⊕ (h r (c⊗ g2 b))

then it can be transformed into

h x c = (reduce (⊕) (map k1 k2 ac))
with gL c b := c⊗ (g1 b)

gR c b := c⊗ (g2 b)
cs := dAcc gL gR c x
ac := zip x cs
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Bulk Synchronous Parallel ML (BSML)

The Bulk Synchronous Parallel (BSP) model
The Bulk Synchronous Parallel (BSP) [104, 11] model is based on the PRAM
model and was proposed by Valiant [131]. However, BSP does not take commu-
nication and synchronization for granted. Like MPI [49], BSP has explicit com-
munication between processors.

Supersteps

Similarly to PRAM, the BSP algorithm computations proceed with a series of
steps, called supersteps. Figure 2.3 presents an example of a BSP superstep. Each
superstep is composed of three phases:

• Computation: a phase of asynchronous calculation during which every pro-
cessors perform a local computation

• Communication: a phase of exchange. Each processor send and receive
data to the others

• Synchronization: a barrier to synchronize all the processors before starting
a new superstep.

Figure 2.3 – Example of a BSP superstep
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Bulk Synchronous parallel ML (BSML)

Language

The language BSML (Bulk Synchronous parallel ML) is a functional version
of BSP based on the Ocaml (Objective Caml) language [128]. It has been de-
signed as a library of OCaml [13, 93, 91]. BSML is a simple and structured lan-
guage that allows us to write functional programs, with explicit parallelism on a
quasi-synchronous machine. From the BSP approach, BSML programs are inter-
blockage free, deterministic and performance estimable.

The main program in BSML handles a parallel vector structure with a fixed
size p (the number of processors on a BSP machine), that contains, for each pro-
cessor, a value. Such structure is represented by a polymorphic type a’ par and
will be denoted by < x0, ..., xp−1 > where xi is the value contained in the ith

processor.

Primitives

BSML gives access to primitives but also BSP parameters. The number of proces-
sor p is accessible by bsp_p.

To get a value from a parallel vector, the primitive get takes as input a
vector and a processor number and return the value it contains. Its signature
is: (α par → int → i with int an integer value contained between 0 and
bsp_p - 1.

The creation of a parallel vector is made with the primitive
mkpar : (int → α’) → α par. It takes a function f as a parameter and builds
a parallel vector where for the processor i, the value is (f i). Informally, mkpar
is defined by:

mkpar f = <f 0, f 1, ..., f (p-1)>.

The parallel application of a vector that contains functions and a vector of
value is possible thanks to the apply primitive. Its signature is:
(α → β par → α par → β par.

Using mkpar and apply, we can define map on parallel vectors.

# let map f = apply (mkpar (fun i -> f));;
val map : (’a -> ’b) -> ’a par -> ’b par = <fun>

map already exists in BSML referred as parfun.
The communications can be ensured with the primitive
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let rec fold_left op e l =
(* This function is equivalent to reduce on lists.
It is also defined in the standard library of OCaml,
can be used using List.fold_left *)
match l with
| [] -> e
| x::xs -> fold_left op (op e x) xs;;

(* val fold_left : (’a -> ’b -> ’a)
-> ’a -> ’b list -> ’a = <fun> *)

let reduce_step op e = mkpar (fun i -> fold_left op e);;
(* val reduce_step : (’a -> ’b -> ’a) -> ’a

-> (’b list -> ’a) par = <fun> *)

let reduce op e v =
(* Local reductions in the parallel vector *)
let local = apply (reduce_step op e) v in
(* List of all the processor ids *)
let pids = (* code omitted, eq. to [0;...; pid-1]*) in
let results = List.map (proj local) pids in
(* This last part cannot be parallelized.
It makes a global reduction in sequential *)
fold_left op e op e results;;

(* val reduce : (’a -> ’a -> ’a) -> ’a
-> ’a list par -> ’a = <fun> *)

Figure 2.4 – Parallel implementation of reduce in BSML

proj : α par → (int → α)

proj is the dual of mkpar. It takes a parallel vector and returns a function that
associates a processor id to a value.

Using communications, we can now implement the BMF primitive reduce on
parallel vectors. A definition of a parallel reduce is presented in Figure 2.4.
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The Coq proof assistant

Proof assistants
A way to do a proof by hand is by using a composition of inference rules. An
inference rule is presented as follows.

rule
P1 . . . Pn

Q

This expression states that if the premises P1 . . . Pn are respected, the conse-
quence Q can be taken for granted. A rule without premises is called an axiom.
For example, considering s(n) the successor of a number (i.e. s(n) = n + 1),
natural numbers can be defined by one axiom and one rule.

zero
0 nat

succ n nat
s(n) nat

Doing proof by hand is easy to write but easily wrong. A simple mistake in
the proof process and the whole demonstration is false. Software have been de-
veloped to tackle errors and solve proofs. In the introduction, we mentioned
Frama-C [119], a tool for verifications on sequential C programs. There are
many proof assistants, and each has its characteristics. Some of them are based
on the Curry-Howard correspondence, also known as the propositions-as-types
paradigm. This isomorphism states that a proof P → Q, where P and Q are
propositions, is a function that takes as input a proof of P and returns a proof of
Q. For an element a, a value of type Pa is a proof that Pa holds. It can be defined
more visually with inference rules.

P→ Q P
Q

≡
f : P→ Q x : P

f (x) : Q

In this thesis, we use Coq [126]. Coq is a system developed in OCaml, based
on the Curry-Howard correspondence. The system provides a language of tac-
tics to help in proof solving. There also exist Isabelle [127]: a High Order Logic
(HOL) prover, written in Standard ML; Idris [15] that is a pure functional lan-
guage with dependent types intending to be general purpose programming lan-
guage; Agda [14]: both a dependently typed functional language and a proof as-
sistant based on the propositions-as-types paradigm; or also Rosette [129, 130], a
solver-aided programming language extending Racket with language constructs
for program synthesis and verification. This list is non-exhaustive.
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Overview of Coq
The proof assistant Coq is based on the mathematical theory CoC (Calculus of
Constructions). Coq is divided into three sublanguages:

• Gallina to write Coq terms (functions, types, axioms, etc.). Its syntax is very
similar to OCaml’s;

• Vernacular to control the behavior of the proof assistant;

• LTac, a language of tactics allowing to construct proofs interactively.

Every term of Gallina have a type, and the types are also terms of the language.

Type definitions

Every object of Coq has a type, including types themselves. The types are defin-
ing ordered sorts with Set as the bottom of the hierarchy. The following inclu-
sions hold.

Set 6 Type0 6 Type1 6 Type2 6 ...

For any i < j, a Typei is typed by Typej. In implies that the particular case of Set
is typed by Typei with any i. Since Set is the type of the “small” datatypes and
function types, cannot directly or indirectly involve other types [73].

As indicated on its original name, Coq is based on the calculus of construction
theory. A definition is made using Definition and is constructed as follows.

Definition name : type := definition.

The pure type system from the CoC has been extended with inductive defini-
tions from the Calculus of inductive Constructions (CiC). It is possible to write an
inductive definition using the keyword Inductive. For example, natural num-
bers are defined in the standard library by:

Inductive nat : Set :=
| O : nat
| S : nat→ nat.

The representation of numbers with nat is not efficient. That is why, the two
sets N and Z have been defined, describing respectively natural numbers and
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the whole set of integers (positive and negative). They are described with the
inductive type positive, that is a representation of a binary number.

Inductive positive : Set :=
| xI : positive→ positive
| xO : positive→ positive
| xH : positive.

Inductive N : Set :=
| N0 : N
| Npos : positive→ N.

Inductive Z : Set :=
| Z0 : Z
| Zpos : positive→ Z
| Zneg : positive→ Z.

Another type can parametrize the definition of a type. It is very convenient to
use parameters for polymorphic structures. For example, the lists are defined in
Coq by:

Inductive list (A:Type) : Type :=
| nil : list A
| cons : A→ list A→ list A.

In the case of list the polymorphism is explicit. The constructors of list will
take a type as a first argument. However, it can be turned implicit by specifying
to Coq the arguments that can be guessed by its type inference system in most
situations.

Implicit Arguments nil [A].
Implicit Arguments cons [A].

The type inference system of Coq is strongly context dependent. The use of
single nil is not enough for guessing the type A. Definition l := nil will return
an error. To specify implicit arguments of a type, or a function, we need to use
@. A working definition of an empty list is then: Definition l := (@nil A).

Coq provides notations to make more readable Coq code. For example, using
the library ListNotations:
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• Instead of nil and cons h t, we can respectively use [ ] and h :: t;

• Singletons can be defined by [x];

• The list containing x1, x2 and x3 can be written [x1; x2; x3]

• The concatenation of two lists a and b can be made using an infix operator:
a ++ b.

A very useful type defined in the standard library is option. option A is an
extension of A with an extra element None.

Inductive option (A:Type) :=
None : option A

| Some : A→ option A.

Functions

Coq provides a pattern matching mechanism for defining functions. By filtering
cases characterized by a pattern, different behaviors can be defined. However, it
is important to notice that all the functions in Coq must be total. In other words,
a function must determine behavior for every constructor of inputs.

For example, the functions pred that returns the predecessor of a natural num-
ber can be defined by:

Definition pred (n: nat) : nat :=
match n with
| O⇒ O
| S m⇒ m
end.

Besides, to set a recursive function, the keyword Definition must be re-
placed by Fixpoint. The map function on lists can be described as follows.

Fixpoint map (A B:Type) (f: A→ B) (l: list A) : list B :=
match l with
| [ ]⇒ [ ]
| h :: t⇒ (f h) :: (map A B f t)
end.
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Coq only allows definitions of functions that terminate. A recursive function
must have a decreasing argument. using the implicit argument {struct}. For ex-
ample, if the decreasing argument is a list l, the function can take a argument
{struct l}. Another way to define a decreasing argument with a measure is de-
fined in the section 2.3.2.

A value can be specified with a property using the set sig. It is composed of
two parts: a value, and a proposition on this value. (sig A P), or by using a more
suggestive notation, {x:A | P x}, denotes the elements of the type A which satisfy
the predicate P. sig2 represents the same but allows to write two predicates:
(sig2 A P Q), or {x:A | P x & Q x}, denotes the elements of the type A which satisfy
the predicates P and Q. The value and the predicate(s) can be respectively got
using the functions proj1_sig and proj2_sig.

Proofs in Coq

From definitions, it is possible to define lemmas, properties or theorems in Coq
with related proof. For example, from the function length on lists that calculates
the number of elements in the structure, and map defined previously, we define
the following property.

Lemma map_length : ∀ A B (f : A→ B) (l: list A),
length (map f l) = length l.

A proof of this lemma can be defined using LTac, the tactic language.

Proof.
intros A B f l.
induction l as [| x xs Hx].
+ simpl. reflexivity.
+ simpl. rewrite Hx; reflexivity.
Qed.

Let’s analyze this step by step. First, we start the proof using the keyword
Proof. The environment of Coq returns a response indicating that there is still
one subgoal to prove.

1 subgoal
============================
∀ (A B : Type) (f : A→ B) (l : list A), length (map A B f l) = length l
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To start the proof, we need to introduce the variables we will use:
intros A B f l.

A : Type
B : Type
f : A→ B
l : list A
============================
length (map A B f l) = length l

In our lemma, l is a list, and then its definition is made by induction. We need
to do an induction on the structure of l for solving this proof:
induction l as [ | x xs Hx]. This tactic can be understood such there are two cases
separated by |. The first case is the situation of l is nil. There is nothing to define
here. Otherwise, l is cons x xs, and we name the inductive hypothesis with Hx.
The answer of Coq shows two subgoals: one for each possible constructor of l.

A : Type
B : Type
f : A→ B
============================
length (map A B f []) = length []

subgoal 2 is:
length (map A B f (x :: xs)) = length (x :: xs)

By default, Coq makes us resolve the first one. Each subgoal resolving is
marked by a bullet +. When the first one is started, Coq only keeps what can be
used in the proof.

A : Type
B : Type
f : A→ B
============================
length (map A B f []) = length []

According to the definition of length, length [] = 0. Since map A B f [] = [],
length (map A B f []) can be simplified by 0 with the tactic simpl. The two ex-
pressions will be simplified, and the environment returns:
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A : Type
B : Type
f : A→ B
============================
0 = 0

Because equality is reflexive, the resolution can be finished by reflexivity.
There is still the second subgoal to solve.

A : Type
B : Type
f : A→ B
x : A
xs : list A
Hx : length (map A B f xs) = length xs
============================
length (map A B f (x :: xs)) = length (x :: xs)

Using the simplification with the tactic simpl the Coq response is the follow-
ing.

A : Type
B : Type
f : A→ B
x : A
xs : list A
Hx : length (map A B f xs) = length xs
============================
S (length (map A B f xs)) = S (length xs)

The resolution can be finished by using the inductive hypothesis and
reflexivity. We process these two operations using a semi-column by
rewrite→ Hx; reflexivity.

Program definition

Program Fixpoint defines any recursive function and generates relative proof
obligation. For example, the termination of a function can also be described using
a measure of the arguments with the keyword measure. If there is no explicit
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decreasing argument in the definition of a recursive function, a proof obligation
about the decreasing measure is generated.

Program Fixpoint foo (A B : Type) (l1 l2 : list A) {measure (length l1 + length l2)}
: list B :=
match l1, l2 with
| [], []⇒ []
| h::t, []⇒ foo t []
| [], h::t⇒ foo [] t
| h1::t1, h2::t2⇒ foo t1 t2
end.

The obligations can be solved one by one using Next Obligation. However,
Coq will try to solve them by itself. If it cannot, it will display them as remaining
obligations to prove. Here, there is only one obligation that still needs to be
solved.

A : Type
B : Type
h2 : A
t2 : list A
h1 : A
t1 : list A
foo : ∀ (A0 B : Type) (l1 l2 : list A0),

length l1 + length l2 < length (h1 :: t1) + length (h2 :: t2)→ list B
============================
length t1 + length t2 < length (h1 :: t1) + length (h2 :: t2)

Coq provides a tactic omega from the library Omega that can solve an equation
of natural numbers automatically. This obligation can be resolved by simplifica-
tion and the tactic omega.

Next Obligation.
simpl; omega.

Defined.

Type classes and Instances

In mathematics, a structure is always accompanied by its properties. These prop-
erties are implicit and are not carried every time they are used. For instance,
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the simple calculation x + y involves the operation (+) that is supposed defined
with all its properties. In this case, I intentionally not defined a type for x and
y. The operation won’t be the same for integers or strings. Here, in both cases, a
property could be that (+) has a neutral element (0 or an empty string).

Type classes [122] in Coq is a solution for surcharging operators and specify
abstract structures. They first have been introduced in Haskell, for ad-hoc poly-
morphism [132]. For example, it is not possible to define equality of predicates on
natural numbers (nat→ nat→ bool), but it is possible to compare much types
(boolean, integers, lists, etc.). Using type information of comparable, we want to
compare two elements without surcharging notations. It is possible, with type
classes in Coq, to define an equality definition using a class definition. The type
class for equality is an override method =?.

Class Eq A :=
{

eqb: A→ A→ bool;
}.

Notation "x =? y" := (eqb x y) (at level 70).

The keyword level in notations denotes a precedence level ranging from 0 to
100. Once a class is defined, we can determine its instances.

Instance eqBool : Eq bool :=
{

eqb := fun (a b : bool)⇒
match a, b with
| true, true⇒ true
| false, false⇒ true
| _, _⇒ false
end

}.

Instance eqNat : Eq nat :=
{

eqb := Nat.eqb
}.

Now, the operator =? is defined for bool and nat types. It is possible to
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obligate a parameter of a function to be an instance of a class. The test of the
difference between elements can be defined as follows.

Definition areDiff (A:Type) (a b: A) {H: Eq A} :=
if a =? b then false else true.

The advantage of passing the hypothesis as an implicit argument is that the
Coq system will automatically look for an instance of the type class in its defini-
tion, corresponding to the parameters. The resolution of instances is made with
a backward manner, i.e. the last defined instance will be preferred during the
resolution. It is important to notice that it is possible to sort the instances for the
resolution. The order is defined by specifying a level value. The instance with the
smallest value will be used, even if it has been defined before. 0 is the default
value for an instance. In the example of Figure 2.5, the resolution will choose
instance xor, and not or. If the levels was not specified, the instance or would be
preferred.

Section

Coq code can be decomposed into sections. All the variables and hypothesis
within a section are only declared for the section scope. For instance, the decid-
ability of a list of A elements can be defined as follows.

Section EqDec.
Variable A : Type.
Hypothesis eq_a : ∀ (a1 a2 : A), {a1 = a2} + {a1 <> a2}.

Lemma eq_dec_list : ∀ (l1 l2 : list A),
{l1 = l2} + {l1 <> l2}.

Proof.
intros u v.
repeat decide equality.
Qed.
End EqDec.

Modules

Coq has a strong abstraction mechanism thanks to module types. In a module
type, behavior is defined using a set of Parameter. A module is a particular
definition of a module type.

39



Chapter 2. Preliminaries

Class Or A :=
{

orb: A→ A→ bool;
}.

Instance xor : Or bool | 1 :=
{

orb := fun (a b : bool)⇒
match a, b with
| true, false⇒ true
| false, true⇒ true
| _, _⇒ false
end

}.

Instance or : Or bool | 2 :=
{

orb := fun (a b : bool)⇒
match a, b with
| true, _⇒ true
| false, x⇒ x
end

}.

Definition f_or (a b : bool) {H: Or bool} :=
orb a b.

Figure 2.5 – Examples of an instance resolution
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Module Type Numbers.
Parameter A:Type.
Parameter add: A→ A→ A.
Parameter minus: A→ A→ A.
End Numbers.

Module Integers <: Numbers.
Definition add := Nat.add.
Definition minus := Nat.sub.
End Numbers.

A module type given as a parameter of another one gives accesses to its pa-
rameters, even if they are not explicitly implemented. Modules can be instanti-
ated by providing a concrete implementation of the parameter model types.

Module Make (Import Numbers : Numbers).
Definition add_minus x y := Numbers.minus y (Numbers.add x y).
End Make.

Module Import OpIntegers := Make Integers.

Coq modules can contained sections, but not the inverse.

Extraction

Coq has not been designed to compute efficiently. To tackle the lack of perfor-
mance, it is possible to extract Coq code using the library Extraction [85] with
three possible targeted languages: OCaml, Haskell, Scheme. These languages are
only computing languages. Then, during the extraction, all the logical aspects are
removed. That is, the extraction mechanism keeps only functions and definitions
of types.

As an example, the function map defined page 33 and its dependencies can be
extracted as the OCaml code shown in Figure 2.6

Finally, the command Separate Extraction get the extracted result into ml files.
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type α list =
| Nil
| Cons of α * α list

(** val map : (α1 → α2) → α1 list → α2 list **)

let rec map f = function
| Nil → Nil
| Cons (h, t) → Cons ((f h), (map f t))

Figure 2.6 – Example of extracted OCaml code from a Coq definition of the map function

SyDPaCC

BSML in Coq with SyDPaCC

SyDPaCC is a set of libraries for Coq. It includes transformation theorems that
state the equivalence of sequential functions and that are used to obtain effi-
cient sequential programs from inefficient ones; BSML formal semantics; and a
set of algorithmic skeletons, programmed using BSML and proved correct with
respect to sequential functions. For example, SyDPaCC provides the first homo-
morphism theorem on lists that states that a homomorphic function is equivalent
to a composition of map and reduce. We refer to [94, 39, 92, 90] for details about
the existing theorems in SyDPaCC.

SyDPaCC defines two Module Type to formalize BSML: BSP_PARAMETERS
that gives a definition of the parameters of the BSP machine, and BSML that
defines the primitives of BSML. BSP parameters are defined with:
Parameter p : N.
Axiom p_spec : 0 < p.

The parameters of BSML are the signature of the primitive signature:
Notation pid := { n:N | N.ltb n Bsp.p = true }. (∗ N.ltb a b→ a ≤ b ∗)
par : Type→ Type.
Parameter get:
∀ (A:Type), par A→ pid→ A.
Parameter mkpar:
∀ (A:Type) (f:pid→ A), par A.
Parameter apply:
∀ {A B:Type)(vf: par(A→B))(vx:par A), par B.
Parameter put:
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∀ (A:Type)(vf:par(pid→A)),
par(pid→A).

Parameter proj:
∀ (A:Type)(v: par A), pid→ A.}

They are all accompanied by axioms to defined their semantics.
What is specific to BSML in SyDPaCC is the implementation of some algorith-

mic skeletons in BSML and the proof of their correctness with respect to some
sequential functions. For example, parallel reduction is defined as the preduce
skeleton:

preduce⊕ v = reduce⊕ list
where list = map (proj local) pids
and local = parfun (reduce ⊕) v

In the definition of parfun, v has type par(list A); reduce is a sequential func-
tion; and pids is the list of all processor identifiers. parfun is function taking as
argument a sequential function f and returning apply(mkpar(fun pid⇒ f )). parfun
has the same semantic that the one defined in the paragraph 2.2.2. ⊕ should be
an associative function with a neutral element i⊕. Note that the return type of
preduce is not a parallel vector but a value of type A.

The way the provided algorithmic skeletons are proved correct is the basis of
the automatic parallelization feature of SyDPaCC that replaces sequential data
structure types by parallel ones, and sequential functions by equivalent parallel
ones. This mechanism relies on two notions of correspondence: type correspon-
dence and function correspondence, both defined as type classes.

Type and function correspondences

The type correspondence between par(list A) and list A is based on a function
join that reduces in parallel a parallel vector of lists into a list, the binary operator
being list concatenation:
join v = preduce (++) (map (proj v) pids). An instance reduce_preduce expresses that
preduce is correct with respect to reduce using the above type correspondence.

A sequential type seq_t corresponds to a parallel type par_t if there exists
a join function that transforms any value of the parallel type to a value of the
sequential type. To avoid too simple transformations (for e.g. a constant function
that returns only one sequential value), join is required to be surjective. With this
additional condition, any sequential value must be reached by join.

A parallel function fp:Ap→Bp is correct with respect to a sequential function
f:A→B if there are type correspondences between A and Ap, and between B and
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Bp. Additionally, f and fp should compute the same result: the result obtained by
sequentializing the result of the application of fp to a parallel value should be the
same that the result obtained by applying f to the sequentialization of the same
parallel value. These requirements mean the follow diagram should commute:

A B

Ap Bp
fp

f
joinBjoinA

The class funCorr represents the correspondence between two functions. Sim-
ilarly, TypeCorr represents the correspondence between two types. In both cases,
joining functions are used to define how a type, or a function, is associated to
another.
Class TypeCorr (seq_t:Type) (par_t:Type) (join:par_t→seq_t) :=
{ type_corr :> Surjective join }.

Class FunCorr
‘{ACorr : TypeCorr A Ap join_A } ‘{BCorr : TypeCorr B Bp join_B}
‘(f:A→B) (fp:Ap→Bp) ‘{HP:@ParProp A Ap join_A ACorr P}:=

{ fun_corr : ∀ ap, P ap→ join_B (fp ap) = f (join_A ap) }.
One important property of function correspondence is that it can be easily

composed. If fp is correct with respect to f and gp is correct with respect to g then
fp ◦ gp is correct with respect to f ◦ g.

A B C

Ap Bp Cp
fp

f

gp

g
joinBjoinA joinC

In a Prolog-like syntax (omitting the type correspondences), we have the fol-
lowing rule:
funCorr( f ◦ g, fp ◦ gp ) : funCorr(f, fp), funCorr(g, gp).

A Coq instance captures this property.
(∗
EnsuresProp is a class ensuring that all the results of a
function respects a property
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∗)
Class EnsuresProp ‘(f:A→B)‘(P:B→Prop) :=

{ ensures_prop: ∀ a:A, P(f a) }.

Instance fc_comp_fcensures
‘{ACorr : TypeCorr A Ap join_A} ‘{BCorr : TypeCorr B Bp join_B}
‘{CCorr : TypeCorr C Cp join_C}
‘{fCorr : @FunCorr A Ap join_A ACorr B Bp join_B BCorr f fp Pa HPa}
‘{gCorr : @FunCorr B Bp join_B BCorr C Cp join_C CCorr g gp Pb HPb}
‘{H: @EnsuresProp Ap Bp fp Pb }

: FunCorr (g ◦ f) (gp ◦ fp).

Automatic parallelization

The automatic parallelization is provided by a function parallel that takes as argu-
ment a sequential function f. All its other arguments are implicit and include type
and function correspondences. In particular an implicit argument is a function fp
correct with respect to f. parallel just returns fp.
Definition parallel ‘(f:A→B)

‘{ACorr : TypeCorr A Ap join_A} ‘{BCorr : TypeCorr B Bp join_B}
‘{fCorr : @FunCorr A Ap join_A ACorr B Bp join_B BCorr f fp (fun x⇒True) HP} :

Ap→ Bp := fp.
This definition seems quite useless, but because of the implicit arguments, it

is not. When applied to a sequential function, the search by Coq for an instance,
will try to build a parallel function equivalent to f using instances of the type class
FunCorr. Due to the instance about the composition of two correspondences, this
search possibly includes decomposition of f into a composition of other sequential
functions, and a search of equivalent skeletons for these functions. However, the
Coq code of parallel programs is not made for being executed. But, thanks to the
axiomatization of BSML in SyDPaCC, the extraction of code directly provides
BSML programs that are, in addition, proved correct.

Lists in SyDPaCC
To illustrate how works SyDPaCC, we will consider the example of lists already
defined in the framework.
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BMF in SyDPaCC

Several aspects of BMF, such as notations, have been added in SyDPaCC. For
example, tupling, pairing, and composition can be respectively written using the
symbols ×, 4, and ◦. The operators also have algebraic properties. The class
Monoid is a class representing an associative operator and its neutral element.
Properties on operators such as associativity, commutativity and are also defined
as classes. These definitions are given in Figure 2.7.

Sequential functions

All the sequential functions are presented in their simple form. However, they
are all implemented as tail-recursive functions in SyDPaCC. For instance, the
function map on lists is already defined in Coq, but is redefined as a tail-recursive
function, map’, in SyDPaCC. To ease the read of the functions, we will give the
definitions with the names of functions that are not necessarily tail-recursive even
if they are implemented as tail-recursive functions.

The function reduce is defined from fold_left, a left-to-right iterator on lists
defined in the standard library of the language. fold_left2 is an alternative fold_left
that takes two lists as input.

Fixpoint fold_left (l:list B) (a0:A) : A :=
match l with

| nil⇒ a0
| cons b t⇒ fold_left t (f a0 b)

end.

Fixpoint fold_left2 A B C (op:C→A∗B→C) (e:C) (l1:list A) (l2:list B): C :=
match (l1, l2) with
| ([], _ ) | (_ , [])⇒ e
| (h1::t1, h2::t2)⇒ fold_left2 op (op e (h1,h2)) t1 t2
end.

Definition reduce A (op:A→ A→ A) ‘{Monoid A op e} :=
fun l⇒ fold_left op l e.

The last primitive from BMF is the function scan. The left accumulation of
values within a list is processed using an operator and its neutral element, rep-
resented by an instance of Monoid. In the definition of scan, the last element of
the input list is not used during the calculation. It is however convenient in some

46



2.4. SyDPaCC

Class LeftNeutral A B (op: B→ A→ A) (e : B) :=
{
left_neutral : ∀ a, op e a = a

}.

Class RightNeutral A B (op: A→ B→ A) (e : B) :=
{
right_neutral : ∀ a, op a e = a

}.

Class Neutral A (op: A→ A→ A) (e : A) :=
{
neutral_left_neutral :> LeftNeutral op e;
neutral_right_neutral :> RightNeutral op e

}.

Class Associative A (op:A→A→A) :=
{
associative : ∀ (x y z: A), op (op x y) z = op x (op y z)

}.

Class Commutative A (op:A→A→A) :=
{
commutative : ∀ (x y: A), op x y = op y x

}.

Class Monoid A (op : A→A→A) (e : A) :=
{
monoid_assoc :> Associative op;
monoid_neutral :> Neutral op e

}.

Figure 2.7 – Definition of classes in SyDPaCC
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cases to accumulate it anyway. The function scanl_last is a version of scan that
keeps this accumulation.

Finally, another function is added to the set of BMF functions. accumulate is
formally defined and implemented as follows.

accumulate g p q ⊕⊗ c [] = g c
accumulate g p q ⊕⊗ c (x :: xs) =

p(x, c)⊕ (accumulate g p q ⊕⊗ c xs)

Fixpoint accumulate (A B C:Type) (g:B→C) (p:A∗B→C) (q:A→B)
(oplus:C→C→C) (otimes:B→B→B) (c:B) (l:list A) : C :=

match l with
| [ ]⇒ g c
| x::xs⇒ oplus (p (x,c)) (accumulate g p q oplus otimes (otimes c (q x)) xs)
end.

List skeletons

The skeletons for lists are defined for distributed lists with an SPMD approach. In
other words, SyDPaCC manipulates vectors of lists, each representing a subpart
of a global list.

By convention, the skeletons in SyDPaCC are defined by the names par_fct
with fct one of the sequential function described above. For example, par_map,
par_reduce, and par_scanl_last are defined as follows.

Definition par_map (A B:Type)(f:A→B) : par(list A)→par(list B) :=
parfun (map f).

Definition par_reduce {A}(op:A→A→A){e:A}{H:Monoid op e}(v:par(list A)) : A :=
let local := parfun (reduce op) v in (∗ local reductions ∗)
let list := List.map (proj local) pids in (∗ vector→ list ∗)
reduce op list. (∗ reduction of the partial reductions ∗)

Definition par_scanl_last A B op1 op2 (e:B) c (v:par(list A)) : par(list B) ∗ B :=
let partials := parfun (scanl_last’ op1 e) v in
let scanls := parfun fst partials in
let lasts := parfun snd partials in
let sums := par_scanl1 op2 c lasts in
( parfun2 (fun sum⇒map (op2 sum)) sums scanls,

par_last (parfun2 op2 sums lasts) ).
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In these definitions, parfun2 is an alternative version of parfun that takes two
parallel vectors and is defined as follows.

Definition parfun2 A B C (f:A→B→C)(v:par A)(v’:par B) : par C :=
apply (parfun f v) v’.

There is no par_scan skeleton in SyDPaCC. Indeed, scan is just a particular
case of scanl_last.

Correspondences and Automatic Parallelization

As explained in the introduction, the parallelization of programs is automatic if
some conditions are respected. First, the distributed type used in skeletons must
have a sequential correspondence. Skeletons on lists are defined on distributed
lists. Then, we need a surjective function join that transforms a parallel vector of
lists into a single list. To get this single list, we need first to get all sublists by
processors and concatenate them together.

Program Definition join A (v:par(list A)) :=
List.flat_map (proj v) pids.

Global Program Instance list_par_list_corr A :
TypeCorr (@join A).

We notice here the presence of Global Program before the definition of the
instance. It can be view as two parts. First, Global extends the effect outside the
current sections and current module. Program then uses the obligation mecha-
nism to manage missing fields, as described in section 2.3.2.

Now the correspondence between functions must be established for the pat-
tern we want to make parallel. For example, for map and reduce:

Global Program Instance map_par_map A B (f:A→B) : FunCorr (map f) (par_map f).

Global Program Instance reduce_par_reduce ‘(op:A→A→A) ‘{Monoid A op e} :
FunCorr (reduce op) (par_reduce op).

Thanks to diffusion theorems, it has been stated that accumulate can be rewrit-
ten using other primitives as follows.
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accumulate g p q ⊕⊗ c

= (prod_curry ⊕) ◦ (prod_curry ( f old_le f t2� ι⊕)× g) ◦
((id× f st)4(snd ◦ snd)) ◦ (id 4 (scanl_last	 c))

In this equality, prod_curry f when f has type A → B → C is the same function
than f, but as type A × B → C. Since the composition of function correspon-
dences is defined in SyDPaCC, accumulate is automatically parallelized with all
the function correspondences defined in the framework.
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In this chapter, we present an extension of the Coq framework, SyDPaCC, with
skeletons for binary trees. Binary trees are more complex than a classic linear data
structure such as lists: the tree structure is irregular, and not necessarily balanced.
Matsuzaki et al. have designed parallel skeletons [75, 99] for manipulating binary
trees. We designed a functional formulation of these algorithms and we imple-
mented algorithmic skeletons on trees using a formalization of BSML in the Coq
proof assistant. We also stated the correctness of these skeletons, and proved it
for some. The full code of the extension is available at https://www.dropbox.
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com/s/l5echieu9wjcm6q/sydpacc_defense.tar.gz. We first present the
different representations we used to define trees (Section 3.1). Then we present
the implementation of functions for these particular datatypes (Section 3.2) and
their parallel implementation (Section 3.3) with the corresponding equivalences
(Section 3.4). We discuss related work in Section 3.5.

Types and representations

Binary trees as an inductive type
The definition of types is following the one presented in Section 2.1.4. In Coq, it
is given as follows.
Inductive t (A B: Type) :=
| Leaf : A→ t A B
| Node : B→ t A B→ t A B→ t A B.
Since this type is defined in a library named BTree, it is named BTree.t.

Serialized trees

Since a node of a binary tree has two children, the distribution of the data can be
discussed: The tree has to be cut into segments, but how? Here, the structure is
linearized and divided as follows. Given an integer m, a node v is called m-critical
if, for each v’ child of v, the following inequality is respected: dsize(v)/me >
dsize(v′)/me with size defined by:{

size Lea f (a) = 1
size Node(b, l, r) = 1 + size l + size r

The critical nodes are the cut points of the tree. Each subtree is translated into
a list of value, defined by the inductive type value. The constructors describe the
elements in a binary representation: Le denotes a leaf, No denotes a normal node
and Cr a critical node. A segment is then a list of values, and a linearized tree, a
list of segments.
Inductive value A B :=
| Le : A→ value A B
| No : B→ value A B
| Cr : B→ value A B.

Definition segment A B := list (value A B).
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(* Considering A (resp. B) as the type of leaf (resp. node)

values *)
Definition s1 : segment A B := [(Cr a)].
Definition s2 : segment A B := [(No b); (Le d); (Le e)].
Definition s3 : segment A B := [(No c); (Cr f); (Le g)].
Definition s4 : segment A B := [(No h); (Le j); (Le k)].
Definition s5 : segment A B := [(No i); (Le l); (Le m)].
Definition lt : list (segment A B) := [s1; s2; s3; s4; s5]

Figure 3.1 – Example of list representation of a binary tree (with m = 5)

The serialization function proceeds in several step. First, the size of each subtree
is calculated in order to annotate the tree elements by Cr, No, or Le. The tree is cut
on the critical nodes and each subtree is transformed into a list. Figure 3.1 gives
an example of a serialized tree with m = 5.

The reverse operation, deserialization, proceeds in several steps. First, each seg-
ment is transformed into a subtree (segments_to_subtrees), following the structure
of a binary tree. At this point, a leaf can be either an actual leaf, from the original
structure, or a critical node that has no child yet. The second step consists on
browsing this list of subtrees to reconstruct a binary tree (rev_subtrees_to_trees). If
a tree is complete, it is added to a stack without its annotations (nature of nodes).
Otherwise, two subtrees are popped from the stack and then grafted to the cur-
rent tree whose annotations have been removed: these subtrees are grafted to
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the first found critical node (the serialization function, and the first step actually
ensure there is only one such node). This grafted tree represents now a complete
subtree, and it is stacked at its turn. The deserialization ends when all the sub-
trees have been grafted and added to the stack. The first, and supposed only one,
element of the stack is the binary tree representation of the input linearized tree.

The types serialization and deserializaiton in SyDPaCC are the following:

• serialization: (BTree.t A B)→ N→ list (Segment A B);

• deserialization : list (Segment A B)→ option (BTree A B)
This function returns

→ None if the input is not a valid serialized tree

→ Some t with t a binary tree otherwise

A list of segments is considered valid if the result is different than None.

To define linearized trees, we use the type LTree that encapsulates the property
of well-formation of a list of segments.
Definition valid_tree ‘(tree: list (segment A B)) : bool :=
is_some(deserialization tree).

Definition LTree A B := { segs:list(segment A B) | valid_tree segs = true }.

Distributed trees

Contrary to binary trees, a linearized tree can be easily distributed. A distributed
tree is defined as a parallel vector of of list of segments. Each processor has
several segments, representing a part of the original tree. Similarly than a LTree,
a PLTree must be well-formed. Using the join function of parallel lists (from the
module ParList), a parallel tree can be sequentialized into a linear tree. This linear
tree must respect the valid_tree property.
Definition PLTree A B :=

{ plt: par(list(segment A B)) | valid_tree(ParList.join plt) = true }.

Sequential functions

In this section, we will present implementations of map and reduce on the
different representations of binary trees.
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On binary trees
On a binary tree, the definitions of map and reduce are defined recursively, sim-
ilarly than in BMF. The function map needs two functions as parameters: kL to
apply to leaf values, and kN for node values. In other hand, reduce only take one
function, k, to reduce a node from a current value, and two sub-reductions. Their
Coq definition is given as follows.

Fixpoint map (A B C D :Type) (kL:A→ C) (kN:B→ D) (tree: t A B): t C D :=
match tree with
| Leaf n⇒ Leaf (kL n)
| Node n l r⇒ Node (kN n) (map kL kN l) (map kL kN r)
end.

Fixpoint reduce (A B:Type) (k: A ∗ B ∗ A→ A) (tree: t A B): A :=
match tree with
| Leaf n⇒ n
| Node n l r⇒ k (reduce k l, n, reduce k r)
end.

On linearized trees

Map

The map function (Figure 3.2) is quite easy to define since there is no dependency
among the nodes during the computation. A function map_local is defined which
will be applied to each segment. It aims to apply kL (resp. kN ) on the elements
marked as leaves (resp. as nodes or critical nodes).

Reduce

Contrary to map, reduce needs for each node to combine the results obtained from
reducing its children trees with the value held by the node as shown before.
Because of the computation dependencies, k must allow partial calculation on
subparts of a tree. The calculation of k can be partially defined if there exists φ,
ψN, ψL and ψR such that:

k(l, b, r) = ψN(l, φ(b), r)
ψN(ψN(x, l, y), b, r) = ψN(x, ψL(l, b, r), y)
ψN(l, b, ψN(x, r, y)) = ψN(x, ψR(l, b, r), y)
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Definition map_local {A B C D} (kL: A→ C) (kN: B→ D) (seg: segment A B) :=
let fmap (v:value A B) :=
match v with
Le v⇒ Le (kL v) | No v⇒ No (kN v) | Cr v⇒ Cr (kN v)
end

in map’ fmap seg.

Definition map {A B C D} (kL:A→C) (kN:B→D) (segs:list(segment A B)) :=
List.map (map_local kL kN) segs.

Figure 3.2 – Formalization of the map function on linearized tree in Coq

This closure property is written k =< φ, ψN, ψL, ψR >u.
We represent this property in Coq thanks to a class Closure.

Class Closure {A B C}
(k : A ∗ B ∗ A→ A) (phi : B→ C) (psiN : A ∗ C ∗ A→ A)
(psiL : C ∗ C ∗ A→ C) (psiR: A ∗ C ∗ C→ C) :=

{
closed : (∀ l b r, k (l,b,r) = psiN (l, phi b, r))

∧ (∀ x l y b r, psiN(psiN (x,l,y),b,r) = psiN(x,psiL(l,b,r),y))
∧ (∀ x l y b r, psiN(l,b,psiN(x,r,y)) = psiN (x,psiR(l,b,r),y))

}.

The reduction on a linearized tree proceeds in two steps. First, reduce_local
applies the functions phi and either psiL or psiR to the m-critical nodes and their
ancestors, and apply k to the other internal nodes. Each segment will then become
a single value, corresponding to a local reduction. If a segment does not contain a
critical node, the local reduction is total. The reduction is partial otherwise. These
two cases does not make reduce_local returning the same type of value. That is
why, we use the type sum from the standard library.
Inductive sum (A B:Type) : Type :=
| inl : A→ sum A B
| inr : B→ sum A B.

Notation "x + y" := (sum x y) : type_scope.
If a segment does not contain a critical node, the result will be constructed with
inl. In the other case, it will be constructed with inr.

Nonetheless, the local reduction, as described, only works if it is applied to
a segment obtained as the correct linearization of a tree. For a list of values that
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Definition reduce_local {A B C} (k: (A ∗ B ∗ A)→ A)
(phi : B→ C) (psiL: (C ∗ C ∗ A)→ C) (psiR: (A ∗ C ∗ C)→ C)
(seg : segment A B) : option (sum A C) :=

match fold_left (opL k phi psiL psiR) (rev’ seg) (Some ([],None)) with
| Some (h::t, _)⇒ Some h
| _⇒ None
end.

Definition reduce_global (A C:Type)
(psiN : A ∗ C ∗ A→ A)
(gt : list(sum A C)) : option A :=

match fold_left (opG psiN) (rev’ gt) (Some []) with
| Some (a::_)⇒ Some a
| _⇒ None
end.

Definition reduce A B C (k: (A ∗ B ∗ A)→ A) (segs : list (segment A B))
{Hc : Closure A B C k phi psiN psiL psiR} : option A :=
let local := map_filter_some (reduce_local k phi psiL psiR) segs in
reduce_global psiN local.

Figure 3.3 – Formalization of the reduce function on linearized tree in Coq

is not well-formed, this function returns None. For a well-formed segment, it
returns a value Some v where v is the result of the local reduction. To reduce the
list of segments, we could apply List.map to reduce_local and the linearized tree.
However, we need to filter out the None results and transform the values of the
form Some v into just v. This is done by a function named map_filter_some. For
example, if a function f returns None of all odd number and Some n for any even
number n, map_filter_some f [1;2;3;4] returns [2;4]. This function is described below.
Fixpoint map_filter_some A B (f:A→option B) l : list B :=
match l with
| [ ]⇒ [ ]
| h::t⇒ match f h with

| None⇒ map_filter_some f t
| Some b⇒ b::(map_filter_some f t)
end end.

All intermediate results are merged using reduce_global into a single value
thanks to psiN. The definitions of each part to reduce a linearized trees are given
in Figure 3.3.
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(∗ Functions for the Application of reduce ∗)
Definition k_c: (N ∗ N ∗ N)→ N := fun t⇒ match t with (a,b,c)⇒ a + b + c end.
Definition phi_c : N→ N := fun x⇒ x.
Definition psiN_c : (N ∗ N ∗ N)→ N := fun t⇒ match t with (a,b,c)⇒ a + b + c end.
Definition psiL_c : (N ∗ N ∗ N)→ N := fun t⇒ match t with (a,b,c)⇒ a + b + c end.
Definition psiR_c : (N ∗ N ∗ N)→ N := fun t⇒ match t with (a,b,c)⇒ a + b + c end.

Instance sum_closure : Closure k_c phi_c psiN_c psiL_c psiR_c.
Proof.
(∗ 8 lines ∗)
Qed.

Definition spec_sumvalues: LTree N N→ option N :=
(reduce k_c) ◦ (map (fun x⇒ 1) (fun x⇒ 1)) .

Figure 3.4 – Size of a linearized tree in Coq

In these definitions, opL and opG corresponds respectively to the functions
used in the local and global reductions. opL will either make complete reductions
using k, or partial reductions using phi, psiL, and psiR from the closure property.
opG will complete the reductions using psiN. They are constructed as follows.
In both cases, a stack is used to keep the already reduced values. In the local
reduction, an option N is also used to describe the type of the last treated element
of the segment.

Size

Thanks to map and reduce, we can calculate the size of a tree. First, map is used
to replace all the values by 1 within the tree. Secondly, the sum of all values is
proceeded using reduce. The code of this example is given in Figure 3.4.

Considering the linear tree of the Figure 3.1, the step-by-step results are the
following.

After the application of map, we obtain the same tree with all the values re-
placed. Since a LTree is a sig, it is made from a list of segments, and a proof of
validity of this list. Its resulting list of segments is constructed as follows.
Definition s1_1 : segment N N:= [(Cr 1)].
Definition s2_1 : segment N N:= [(No 1); (Le 1); (Le 1)].
Definition s3_1 : segment N N:= [(No 1); (Cr 1); (Le 1)].
Definition s4_1 : segment N N:= [(No 1); (Le 1); (Le 1)].
Definition s5_1 : segment N N:= [(No 1); (Le 1); (Le 1)].
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Definition lt_1 : list (segment N N) := [s1_1; s2_1; s3_1; s4_1; s5_1].
A local reduction returns an option (N+N) corresponding to the sizes of a

subtree. Since we apply reduce_local with map_filter_some, the local reductions will
return a list of (N+N).
Definition gt : list (N+N) := [inr 1; inl 3; inr 3; inl 3; inl 3].

reduce_global is applied to the global structure composed by the values of every
local reduction and return Some 13.

Tree skeletons

Since the formalized code as for purpose to be extracted and be run with
BSML, we use the par type provided in its Coq formalization. A distributed lin-
earized tree is then a parallel vector of a list of segments. We add the well-formed
condition to this kind of vector using a boolean predicate valid_tree.
Definition PLTree A B :=

{ plt: par(list(segment A B)) | valid_tree(ParList.join plt) = true }.
As described above, on a linearized version of a tree, the map function on

trees is a map function on lists. Besides the SyDPaCC framework already features
a map skeleton on lists. So a parallel map on trees can be obtained by construction
using the parallel function provided by SyDPaCC:
Definition map_par {A B C D} (kL:A→ C) (kN:B→ D) :

par (list (segment A B))→ par (list (segment C D)) :=
ParList.map (map_local kL kN).

The first part of reduce can be made in parallel using a parallelization of
map_filter_some with parfun. The second part cannot be made in parallel. It is only
the application of a global reduction, on the list of all values from the previ-
ous step. In SyDPaCC, ParList.join transforms a parallel vector of lists into a list
(present on all the processors). We perform a global reduction on this list.
Definition reduce_par {A B C} (k: (A∗B∗A)→ A) (v:par(list(segment A B)))

{Hc: Closure A B C k phi psiN psiL psiR} : option A :=
let l:=parfun(map_filter_some(reduce_local k phi psiL psiR)) v
in reduce_global psiN (ParList.join local).
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Correspondences

For automatic parallelization of programs, two types of correspondence must
be proved: type correspondences and function correspondences. All these details
have been presented in Section 2.4.2.

The set of type classes and instances used for automatic parallelization can
also be used for a change of sequential representation. Here is a way to compose
changes of representations: we call such a composition, vertical composition. The
composition of two functions and their correspondences as described above is
called horizontal composition. These two kinds of compositions are illustrated in
the following diagram:

A0 B0

A B C

Ap Bp Cp
fp

f

f0

gp

g
joinBjoinA joinC

joinA0
joinB0

In this diagram, a type correspondence between Ap and A0 is established as a
composition of the type correspondence Ap to A and then A to A0. Similarly, a
function correspondence between f0 and fp is established.

In the context of trees, Ap could be the parallel vector of lists of segments, A
the list of segments (linearized tree) and A0 the type BTree.t of trees. Similarly, a
function correspondence between f0 and fp is established.

Type correspondences

To create a type correspondences between a binary tree and its linear parallel
representation, two sub correspondences must be established:

1. a correspondence between a parallel linearized tree (PLTree) and a sequential
linearized tree (LTree)

2. a correspondence between a sequential linearized tree (LTree) and a binary
tree (BTree)
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The correspondence 1 is just the same correspondence between a list, and a
distributed list.
Program Definition join_pltree_ltree ‘(plt: PLTree A B) : LTree A B :=

ParList.join plt.
The second correspondence 1 is more difficult to obtain. We need to find a

joining function that from a LTree returns a BTree. In addition, this function must
be surjective. A definition of this function is given as follows.
Definition join_ltree_btree A B (ltree: LTree A B): BTree.t A B :=
let Hlt := valid_tree_iff (proj1_sig ltree) (proj2_sig ltree) in
no_some (exist (fun l⇒l<>None) (deserialization (proj1_sig ltree)) Hlt).

In the code above, valid_tree_if is a lemma that states the existence of a result
different than None for the deserialization of a LTree.

To prove the surjectivity of join_ltree_btree, we need to show that for all
BTree bt, there exists a LTree lt such as join_ltree_btree lt = bt. Since we just have to
find one, we picked the most obvious one, serialized with m = 1. In this case, all
the nodes will be critical, which is convenient for proving the following lemma,
used in the proof of surjectivity.
Lemma deserialization_serialization_1:
∀ ‘(tree: BTree.t A B),
deserialization(serialization tree 1) = Some tree.

This proof made over here by induction on the tree structure. Since all the
nodes are critical, we remove a case: a value cannot have be constructed with No.
The other approach would be to use the length of the tree as a value of m. In this
case, the case Cr would have been removed. This proof is complete assuming the
following lemma. However, this lemma is not proved yet.
Lemma rev_subtrees_to_trees_serialization:
∀ (m:N) ‘(tree: BTree.t A B),
∃ tree’,
∀ l stack,
rev_subtrees_to_trees(segments_to_subtrees (serialization tree m) ++ l) stack =
rev_subtrees_to_trees l (tree’::stack).

Function correspondences
For having automatic parallelization of the functions, different FunCorr instances
must be defined. First, a correspondence between a function on a BTree and on
a LTree. Then, a correspondence between a function on a LTree and on a PLTree.
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Finally, by composition, and from the two previous correspondences, a corre-
spondence between a function on a BTree and on a PLTree.

The correspondences for map are the following:
Global Instance map_tree_map_ltree {A B C D} (kL:A→C) (kN:B→D) :

FunCorr (BTree.map kL kN) (lTree.map kL kN).

Global Instance map_ltree_map_par A B C D (kL:A→C) (kN:B→D):
FunCorr (LTree.map kL kN) (PLTree.map kL kN).

Global Instance map_tree_map_par ‘(kL:A→C) ‘(kN:B→D):
FunCorr (BTree.map kL kN) (PLTree.map kL kN).
These three instances are proved. As discussed in Section 1.2, there are dif-

ferent techniques for proving correctness with formal methods. In one hand, map
on parallel trees is obtained by construction, from already proved correct map
function on distributed lists. In the other hand, the proof of map_tree_map_ltree is
made as posteri. The function on BTree and LTree are defined independently and
their equivalence is proved after. Finally, the third instance, map_tree_map_par, is
proved by construction from the others.

Similarly, the correspondences for reduce are the following.
Global Instance reduce_tree_reduce_ltree (A B C:Type) (k:(A∗B∗A)→A)

‘{H: ClosureU A B C k phi psiN psiL psiR } :
FunCorr (Some ◦ (BTree.reduce k)) (LTree.reduce k).

Global Instance reduce_ltree_reduce_par ‘(k:A∗B∗A→A)
‘{Hclose: @ClosureU A B C k phi psiN psiL psiR}:

FunCorr (LTree.reduce k) (PLTree.reduce k).

Global Instance reduce_tree_reduce_par ‘(k:A∗B∗A→A)
‘{Hclose: @ClosureU A B C k phi psiN psiL psiR} :

FunCorr (Some ◦ (BTree.reduce k)) (PLTree.reduce k)(join_B:=(fun x⇒x)◦(fun x⇒x)).
As for map_ltree_map_par, the correspondence between LTree.reduce and

PLtree.reduce is proved as following: Since only reduce_local is processed in
parallel, the global reduction in the two cases are naturally the same. The com-
putation of each segment is independent then distribute them before applying
reduce_local, and merge them after is similar than sequentially apply reduce_local
to each segment. The instance reduce_tree_reduce_ltree is not proved yet. Assuming
reduce_tree_reduce_ltree correct, reduce_tree_reduce_par is proved by composition.
Our idea to make this proof is too explicitly defined the global structure a tree,
from a linear tree. The reduce function on LTree is decomposed into two parts,
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and makes partial calculation thanks to the closure property. The total of partial
calculations is the same than the reduction on a binary tree, if the right order
is respected. A segment that has a critical node will perform a partial compu-
tation during the local reduction, waiting for be branched with the two other
subreductions processed in other segments. By explicitly define a path in a linear
representation of a tree, we would be able to define which local reduction can be
used for a specific moment of the global reduction, and prove that the result is
the same than in a binary tree representation.

Discussion

SyDPaCC is, to our knowledge, the only framework that supports the de-
velopment of verified parallel programs that can be compiled to native code and
run on parallel machines. However proof assistants are sometimes used to reason
about parallel programs.

Several works are based on a deep embedding of parallel languages or li-
braries: the syntax and semantics of such languages are modeled using a proof
assistant. If it is convenient to have such a formalization to reason about meta
properties of the considered language, it is less convenient to write programs
than using a shallow embedding as we do for SyDPaCC. For example, Grégoire
and Chlipala provide a small parallel language and its semantics and prove cor-
rect optimizations of stencil based computations [59]. A subset of Data Parallel C
has been formalized using the Isabelle/HOL proof assistant [35]. The tool gen-
erates Isabelle/HOL expressions that represent the parallel program rather than
actual compilable code. The dependently type language Agda is used by Swier-
stra to formalize mutable explicitly distributed arrays. He uses this formalization
to write and reason about algorithms on distributed arrays: a distributed map,
and a distributed sum.

It is, of course, possible to reason about distributed lists, and consider their
distribution using the formalization of BSML in Coq. SyDPaCC however allows
for the extraction of parallel code, but it does not support mutable data structure.
Based on the work of Malecha et al. [95], SyDPaCC may be extended to reason
about to extract BSML programs working on mutable data structures.

Note that all the previously cited formalizations consider linear data struc-
tures. To our knowledge it is the first time a proof assistant is used to generate
parallel programs manipulating trees.

63



Chapter 3. Correct parallel patterns for trees

On the implementation side, algorithmic skeletons libraries mostly consider
linear data structures such as lists and arrays [7, 24, 37, 83]. One exception is
SkeTo1 [97]: its earlier versions contained tree algorithmic skeletons, but the latest
version does not, although recent work considers a new implementation [117].

1http://sketo.ipl-lab.org
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In this chapter, we present PySke, a library of skeletons written in Python. After
a global presentation of the API, we successively describe how skeletons are
constructed for lists and trees. In a final discussion, we present relative works
and possible extensions of PySke.
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A Python library

The C Message Passing Interface (MPI) standard library has been extended
in Python through different libraries, such the mpi4py 1 [32, 33, 31] library. Using
this extension, we have developed Python skeletons for two data-structures, lists,
and trees, with an object-oriented programming (OOP) style. These structures are
often involved in solving data analysis problems. Combining the OOP style, and
the expressivity of Python, it is very comfortable to write parallel programs with
PySke. The full library is available at https://pypi.org/project/pyske/
or can be installed with pip, the package manager of Python, by

# pip install pyske

Skeletons on Lists

Parallel Lists

The PySke algorithmic skeletons on lists are provided as methods for parallel
lists in a class PList. The API provides a global view of programs. That is, a
PySke program on parallel lists is written as a sequential program on sequential
lists. However, the program operates on parallel lists. PySke also offers a class
SList with additional sequential functions on lists. This is very different from
the programming style of MPI and its Python version mpi4py. Both follow the
SPMD where the overall program must be thought as a parallel composition of
the program being written that depends on the value of a function returning a
different value for different processors.

Figure 4.1 illustrates the difficulty to read SPMD program, especially when
communications are involved.

1https://github.com/mpi4py/
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from mpi4py import MPI
pid, nprocs = MPI.COMM_WORLD.Get_rank(),

MPI.COMM_WORLD.Get_size()
if pid!=0:

x = MPI.COMM_WORLD.recv(source=0); print("pid=", pid,
"\nx=", x)

else:
for i in range(1,nprocs): MPI.COMM_WORLD.send(pid, dest = i)

Figure 4.1 – A mpi4py SPMD Program

The overall parallel program is the parallel composition of this program
where the variable pid is giving the process identifier. While in sequential, the
two branches of the conditional cannot be both executed, in SPMD they are both
executed (if the number of processors is more than one) depending on the pro-
cessor identifier.

In this program, processor 0 sends its pid to all other processors that in turn
receive a value from processor 0 and then print their pids and the received value.
The explanation of this program shows that it would be better to have two distinct
moment: first the code performed by 0 and then the code performed by the other
processors. In this case, the code could be changed to satisfy this constraint, but
it is not always the case. When a program is complex it is also difficult to know
if the value of a variable depends on the pid or not. Finally it is also difficult to
determine if a variable is supposed to be used as a local sequential variable (like
the loop counter i), or if the variable could be understood as a kind of array of
size the number of processors.

The global view of PySke avoids these difficulties and makes the overall struc-
ture of parallel programs clearer.

In addition to the default constructor that returns an empty parallel list, our
API provides several ways to create a PList:

• the init(f, size) factory builds a parallel list of global size size that
contains value f(i) at index i. Internally each processor contains a list of
size size / nprocs where nprocs is the number of processors running
the PySke program. If size is not dividable by nprocs, the first size %
nprocs processors contain one more element than the other processors.

• the from_seq(l) factory builds a parallel list that contains only l at pro-
cessor 0. The distribution of this list is not even. l does not need to be define
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Global View SPMD View

[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

processor 0 1 2 3

content [0, 1, 2] [3, 4, 5] [6, 7] [8, 9]
global_size 10 10 10 10

local_size 3 3 2 2

start_index 0 3 6 8

distribution [3, 3, 2, 2] [3, 3, 2, 2] [3, 3, 2, 2] [3, 3, 2, 2]

Figure 4.2 – Global and SPMD view of PList.init(lambda x:x,10)

on processors other than 0. This kind of factory can be useful when data
can only be read from processor 0.

Internally, the implementation follows the SPMD style. A parallel list contains
the following fields on each processor:

• __distribution is a list of numbers: it contains the local sizes for all the
local contents. Therefore __distribution has length nprocs,

• __content contains the local piece, at a given processor, of the global list;
the content of this field may be different on different processors,

• __local_size contains the size of __content, and for a processor with
processor identifier pid, __distribution[pid] equals __local_size,

• __global_size contains the global size of the parallel list, i.e. the sum of
all __local_size; the value is the same on all the processors,

• __start_index is the index in the global list of the first element of the
local list.

Figure 4.2 shows a global view and its corresponding SPMD implementation of
a parallel list build using PList.init(lambda x:x,10) on a machine with 4

processors.

Skeletons

The API provides methods to apply a given sequential function to all the ele-
ments of one or two parallel lists, yielding a new parallel list. There are several
variants of this map skeleton:
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• For a parallel list pl and a unary function f, pl.map(f) is the parallel
list obtained by applying f to each element of pl. This skeleton does not
require any communication to be executed. The distribution of the output
parallel list is the same than pl.

• For a parallel list pl and binary function f taking an index and a value,
pl.mapi(f) is the parallel list obtained by applying f to each (global)
index and the element at this index.

• For two parallel lists pl1 and pl2, and a binary function f,
pl1.map2(f,pl2) is the parallel list obtained by applying f at every
possible index to the element of pl1 and the element of pl2. A pre-
condition for this skeleton to execute correctly is that pl1 and pl2 have
the same distribution (and hence the same size).

• The zip skeleton is just a call to map2 where f builds a pair from two
values.

The first skeleton that needs communications for its execution is the
reduce skeleton. Using a binary operation op which forms a monoid
with value e (i.e. op is associative and for all value x, op(x,e)
equals op(e,x) equals x) pl.reduce(op, e) returns the value
op(pl[__global_size-1,op(...,op(pl[0],e)). If pl is non empty e
can be omitted. For example the sum of all the elements of a parallel list pl
can be written pl.reduce(lambda x,y:x+y). The result of reduce is a
sequential value.

The following program computes the variance of a discrete random variable
X implemented as a parallel list:

n = X.length()
avg = X.reduce(add) / n
def f(x): return (x-avg) ** 2
var = X.map(f).reduce(add) / n

The map skeleton and variants cannot change the distribution of their input
parallel lists. However it may be necessary to do so, for example to filter out some
of the elements of the distributed list. In order to obtain a flexible mechanism to
do so, we provide a skeleton named get_partition that is more general than
a filter skeleton. get_partition basically changes the view that the users have
of the parallel list. Instead of being a list of elements, pl.get_partition()
is a parallel list of nprocs lists. The distribution of pl.get_partition() is
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the list of size nprocs containing only 1. On 4 processors, if the global view of
pl was the one of Figure 4.2, then the global view of pl.get_partition()
is [[0,1,2],[3,4,5],[6,7],[8,9]]. Now a simple application of map is
enough to filter out some values, for examples all the values below 5:

pl2 = pl.get_partition().map(lambda l:l.filter(lambda x: x>5))

The global view of the resulting list is: [[],[],[6,7],[8,9]].
The skeleton flatten allows to obtain a list of elements from a parallel list

of lists. pl3 = pl2.flatten() has the global view [6,7,8,9], but it is not
evenly distributed. Note that to have a consistent distribution information on all
processors, the local sizes should be broadcast. The distribution is this case is
[0,0,2,2].

The skeleton balance returns a parallel list that is globally equivalent
to the input object, but that is evenly distributed. Thus the distribution of
pl3.balance() is [1,1,1,1].

Skeletons on Trees

The ill-balanced and irregular structures of Trees make challenging efficient
computation. Contrary to lists, the structure of trees is not linear. Instead of pro-
ceeding the computation from left-to-right (or right-to-left), it does a from top to
bottom (or from bottom to top) computation.

Binary Trees

A binary tree, BTree, is a tree in which a node has two children. Two constructors
are defined by inheritance. Leaf(a), to instantiate a binary tree with only on
the element containing the value a, and Node(b,lb,rb) where b is the value
contained into the node, with lb and rb two binary trees corresponding to the
children nodes.

Serialization and Distribution
The serialization of trees in PySke is based on the same approach than in
SyDPaCC. Here, each subtree is translated into a list of TaggedValue called
Segment and encapsulated into an LTree instance. A TaggedValue is a couple
of a value and a tag corresponding to the type of element in the original tree. Tags
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are L for leaf, C for critical node, and N for regular node. The example presented
in Figure 3.1 can be translated in PySke as follows.

s1 = Segment([TaggedValue(a,’C’)])
s2 = Segment([TaggedValue(b,’N’), TaggedValue(d,’L’),

TaggedValue(e,’L’)])
s3 = Segment([TaggedValue(c,’N’), TaggedValue(f,’C’),

TaggedValue(g,’L’)])
s4 = Segment([TaggedValue(h,’N’), TaggedValue(j,’L’),

TaggedValue(k,’L’)])
s5 = Segment([TaggedValue(i,’N’), TaggedValue(l,’L’),

TaggedValue(m,’L’)])
lt = LTree([s1,s2,s3,s4,s5])

The PySke algorithmic skeletons on linearized trees are provided as methods
of a class PTree (for parallel tree). They are built with the same approach than
parallel lists. The two ways to create a parallel tree are the following:

• The default constructor of PTree distributes a linearized tree, and can
be called by PTree(lt). The distribution is not based on the number of
Segment but on the average number of TaggedValue in a global reparti-
tion. Obviously, depending on the serialization parameters, all the Segment
won’t have the same number of elements. The distribution is made in or-
der to have a number of value close to total_size / nprocs. If it used
without any input, the constructor will return an empty parallel tree.

• A PTree can be imported from a text file made with the string output of the
type, using the factory PTree.init_from_file(filename, parse)
with parse a parser from string to the type of value contained in the tree
(int by default).

SPMD style is also followed for the implementation of parallel trees (but the
user API does follow the global view approach). The fields of a PTree are:

• __content contains a single list of TaggedValue representing all the
Segment contained in the current instance.

• __distribution is similar than for parallel lists. It is a list of number
representing the number of Segment per processor.

• __global_index contains all the index of the distribution of the seg-
ments. The index is a list of a couple of integers representing the start point
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Global View SPMD View

[[a], [b, d, e], [c, f , g],
[h, j, k], [i, l, m]]

processor 0 1 2 3

content [a, b, d, e] [c, f , g] [h, j, k] [i, l, m]

distribution [2,1,1,1]
global_index [(0,1),(1,3),(0,3),(0,3),(0,3)]
start_index 0 2 3 4

nb_segs 2 1 1 1

Figure 4.3 – Global and SPMD view of PTree(lt)
(lt from Figure 3.1)

of a segment and its size. The start points are calculated for each processor,
i.e. the start point of the first segment of a processor is always 0.

• __start_index index of first index for the current pid in global_index

• __nb_segs contains the number of Segment in the local content. This
value can be got using __distribution[pid].

Figure 4.3 shows the global view and the corresponding SPMD implementation
of a parallel tree build using PTree(lt) with lt the linearized tree presented
in Figure 3.1, on a machine with 4 processors. To simplify the notation, we just
represent the TaggedValue instances by their values.

The value of m has a real importance in the distribution of the data. If m has
a small value, the linearized Segment of tree will be small too. It is convenient
to balance the distribution within the processors but it implies to do more partial
calculation. A large value makes less Segment but the distribution may be more
unbalanced. Matsuzaki et. al. discuss more precisely about this value in [98].
The map skeleton by itself would show a better relative speed-up because of the
absence of communications. With a perfect distribution (m = 1), the scalability
would be perfect. The choice of how splitting the trees by considering the num-
ber of processors, the machine characteristics, and the size of each subtree with
more relativity would be better. The technique of distribution can be improved
by detecting the type of a tree. For a given node, by calculating the size of the left
and the right subtrees, the type of the binary tree can be decided, and then the
relative decision of splitting.
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Skeletons
The tree skeletons described by Skillicorn in [121] represents the base of the tree
skeletons implemented in the library. They are provided as sequential functions
on all the Segment of one or two parallel trees, yielding a new parallel tree.

The pattern on trees follow the ones on lists. The first one, the map skeleton,
applies two functions to every element of a tree. The need of two functions is due
to the non necessary same type for values on nodes and leaves. For a parallel tree
pt, pt.map(kL, kN) is the parallel tress obtained by applying kL to each leaf
values, and kN to each node values, of pt. This skeleton is pretty simple because
it does not require any communication and then can be executed on a single
step. The skeletons zip and map2 are defined with the same approach. For two
parallel tree pt1, and pt2 with the exact same shape (same distribution, and
same tags on values), pt1.map2(pt2, f) constructs a new PTree where the
values are obtained by applying f at every possible index to the element of pt1
and the element of pt2. The zip skeleton is defined as a particular case of map2
where
f = lambda x, y: (x,y), and can be called by pt1.zip(pt2).

The reduce skeleton is based on its sequential definition defined by:

Leaf(a).reduce(k) == a
Node(b,lb,rb).reduce(k) == k(reduce(k,lb), b,

reduce(k,rb))

The reduce skeleton can be then used on a parallel tree pt by
pt.reduce(k, phi, psiN, psiL, psiR) with k, phi, psiN, psiL,
psiR respecting the closure property defined in Section 3.2. Its execution neces-
sitates communication and is composed by several steps: Firstly, each Segment
is locally reduced into a single value with k, phi, psiL and psiR. After all
the local results are gathered at processor 0, a global reduction is calculated
using k and psiN. The reduce skeleton returns either a single value in the first
processor and None otherwise.

The Upwards Accumulation function, uacc, is defined similarly but it has the
particularity of keeping the tree structure for its result:

Leaf(a).uacc(k) == Leaf(a)
Node(b,lb,rb).uacc(k) == Node(k(lb.reduce(k), b, rb.reduce(k)),

lb.uacc(k), rb.uacc(k))

In the same way, to allow parallelization, the closure property k =<
φ, ψN, ψL, ψR >u must be respected. The uacc function is used as follow:
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pt.uacc(k, phi, psiN, psiL, psiR). Three computation steps are nec-
essary for the parallel execution of uacc. We first make a local accumulation
processed with k, phi, psiL and psiR to get both a local, but incomplete, ac-
cumulated segments, and the top values of accumulations (later used to process
complete accumulation). The calculated top values are gathered to the processor
with pid == 0, and with psiN, the actual top values are calculated. The actual
top values are redistributed are each Segment is finally updated if necessary
during one last step using k.

The behavior of the Downwards Accumulation function, dacc, is the follow-
ing:

Leaf(a).dacc(gL, gR, c) == Leaf(c)
Node(b, lb, rb).dacc(gL, gR, c) ==

Node(c,
lb.dacc(gL, gR, gL(c,b)),
rb.dacc(gL, gR, gR(c,b)))

Another closure property must be defined here. The dacc function can be
parallelized if there exists phiL, phiR, psiU and psiD such that:

gL(c, b) = ψD(c, φL(b))
gR(c, b) = ψD(c, φR(b))
ψD(ψD(c, b), b′) = ψD(c, ψU(b, b′))

This second closure property on (gL, gR) is denoted by:

(gL, gR) =< φL, φR, ψU, ψD >d .

pt.dacc(gL, gR, c, phiL, phiR, psiU, psiD) is therefore a call to
the dacc skeleton.

This skeleton is also processed with several computation steps. First, each pro-
cessor computes a local intermediate values with psiU, phiL and phiR. These
values correspond to the values to pass to children of critical nodes in a global
computation. The intermediate values are gathered to the processor with pid
== 0 and using psiD and the initial value of c, the first processor computes
actual ones. After redistributing them, each processor performs a global down-
ward accumulation can be processes by applying dacc locally.

Numbering the nodes with a prefix traversing order of a variable T imple-
mented as a parallel tree can be computed as shown in Figure 4.4

Auxiliary functions used for closure properties are obtained using the deriva-
tion technique described in [102] The skeletons described above have their se-
quential implementations for LTree. For an instance of distributed tree pt, if
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phi = lambda b: (1, 0, 0, 1)
sum2 = lambda x,y : x + y

def k((ll, ls), b, (rl, rs)): return (ls, ls + 1 + rs)

def psi_n((ll, ls), (b0, b1, b2, b3), (rl, rs)):
res_1 = b0 * ls + b1 * (ls + rs + 1) + b2
res_2 = ls + 1 + rs + b3
return (res_1, res_2)

def psi_l((l0, l1, l2, l3), (b0, b1, b2, b3), (rl, rs)):
res_2 = (b0 + b1) * l3 + b1 * (1 + rs) + b2
res_3 = l3 + 1 + rs + b3
return (0, b0 + b1, res_2, res_3)

def psi_r((ll, ls), (b0, b1, b2, b3), (r0, r1, r2, r3)):
res_2 = b1 * r3 + b0 * ls + b1 * (1 + ls) + b2
res_3 = r3 + 1 + ls + b3
return (0, b1, res_2, res_3)

def gl(c, (bl, bs)): return c + 1

def gr(c, (bl, bs)): return c + bl + 1

def phi_l(b): return 1

def phi_r((bl, bs)): return bl+1

initial = T.map(lambda a : (0,1), lambda x: x)
processed = initial.uacc(k, phi, psi_n, psi_l, psi_r)
prefixed = processed.dacc(gl, gr, 0, phi_l, phi_r, sum2, sum2)

Figure 4.4 – Example of PySke skeleton use with prefix numbering application
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there exists a skeleton F, then there exists the same function that can be called by
lt.F(params) with lt an instance of LTree. The functions can also be called
on BTree instances, but all the input parameters relative to closure properties
must be removed. The sum of nodes can then be processed as following, with lt
an instance of LTree and bt an instance of BTree.

def add(x,y,z): return x + y + z
def one(x): return 1
sum_lt = lt.reduce(add, one, add, add, add)
sum_bt = bt.reduce(add)

Rose Trees

The rose trees are also implemented in PySke by the RNode(v, ts) constructor
where v is the value contained in the node and ts a list of RNode representing
children. If sub == [ ], then the current instance is a leaf. All the primitives
defined on BTree are also defined for RTree, plus lacc and racc representing
respectively the Leftward and the Rightward accumulation. Skeletons are not
directly defined for this structure. Indeed, Mastsuzaki et. al. have proved that all
of these functions can be defined using transformations of RNode into BTree,
(and BTree into RNode to get an instance of RNode as result), BTree instance
methods [101] and two other ones:

Leaf(a).getchl(c) == Leaf(c)
Node(b, lb, rb).getchl(c) == Node(l.value, l.getchl(c),
r.getchl(c))

Leaf(a).getchr(c) == Leaf(c)
Node(b, lb, rb).getchr(c) == Node(r.value, l.getchr(c),
r.getchr(c))

For a rn, an instance of RNode, the transformations can be processed by
bt = rn.r2b() and rn = RNode.b2r(bt). According to [101], skeletons on
RNode can be defined from the following equalities:

rn.map(f) == RNode.b2r(rn.r2b().map(lambda x:None, f))
rn.map2(rn1, f) == RNode.b2r(rn.r2b().map2(rn1.r2b(), f))
rn.reduce(f, g, unit_f) == rn.r2b().map(lambda x:unit_f, lambda

x:x).reduce(lambda n,l,r: g(f(n,l),r))

The accumulation within the RNode instances are more tricky and need more
than just quick transformations from RNode to BTree instances. Following OOP
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style, the four accumulators (uacc, dacc, lacc and racc) on RNode can be
defined as follows.

def uacc(self, f, g, unit_f):
bt = self.r2b()
bt2 = bt.map(lambda x: id_f, lambda x: x).uacc(k)
return RNode.b2r(bt.map2(bt2.getchl(), f))

def dacc(self, f, unit_f):
bt = self.r2b()
return RNode.b2r(bt.dacc(f, lambda c,b: c, unit_f))

def lacc(self, f, unit_f):
bt = self.r2b().map(lambda x:unit_f, lambda x:x)
return RNode.b2r(bt.uacc(lambda l,n,r: f(n,r)).getchr())

def racc(self, f, unit_f):
def g(t1, t2):

(flag1,p1,a1,b1),(flag2,p2,a2,b2) = t1, t2
if flag1 and flag2:

return (True, p1 and p2, f(a1,a2),
f(b1,a2) if p2 else b2)

else:
return (t1 if flag1 else t2)

bt = self.r2b()
gL = lambda c,b:g(c, lambda x : (True, False, None,

unit_f))
gR = lambda c,b:g(c, lambda x : (True, True, x, None))
return RNode.b2r(bt.dacc(gL,gR,(False, True, unit_f,

None)))

We notice the need of specifying the unit element of some operations in the
definition above. They must be specified for leaf cases in the resulting BTree
instances because they have None as value.

Discussion

Target

PySke is designed for people who wants a trade-off between productivity and
efficiency. Python is one of the most used language in the computing world for
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its simplicity. Comparing to already libraries, we are not expecting very good
performances. mpi4py, used in the conception of PySke, is a Python library con-
structed MPI coded in C. The mpi4py library is literally coded in C, then its use
needs serialization all the time. These conversions of data from Python types to C
supported types, and inversely to exploit the results in Python, lead to a drop in
performance. However, a user can easily extend the API with its own functions,
and use it on computing mesocenter, i.e. medium clusters. PySke could also be
used in academic programs, to introduce parallelism with a skeleton approach.

Other libraries
Algorithmic skeletons were originally inspired by functional programming. It is
not a surprise that several functional programming languages have algorithmic
skeleton libraries. For OCaml, OCamlP3L [28] and its successor Sklml offer a set
of a few data and task parallel skeletons. Both rely on imperative features of
OCaml. parmap [37] a lightweight skeleton library that provides only parallel
map and reduce on shared memory machines. BSML [93] is another example of
programming library that is function and used to implementation algorithmic
skeleton libraries for OCaml [89]. All these libraries only operate on arrays and
lists, not trees. While PySke does not provide task parallelism skeletons, its set
of skeletons on lists is richer than the set of data parallel skeletons of the other
libraries.

Eden is a non-purely extension to the Haskell language [87] that is also used to
implement higher-level skeletons [88]. Accelerate is a skeleton library for Haskell
that targets GPUs only. The initial proposal of Chakravarty et. al. [20] featured
classical data parallel skeletons (map and variants, reduce, scan and permuta-
tion skeletons) on multi-dimensional arrays. Besides following an algorithmic
skeleton approach, Accelerate optimize the composition of skeletons at run-time
rather than compile-time, and kernels are also compiled at run-time. For Scala,
the Delite [123] framework can be considered as a skeletal parallelism approach.
The goal of this framework is to ease the development of very high-level domain
specific languages. All these languages target the Delite framework that is a set
of data structures and mostly classical skeletons on them: map and variants, re-
duce and variants, filter, sort; and one less usual skeleton: group-by, as Delite has
dictionaries as one of its supported data structures. Delite provides compile-time
optimization through staged programming. Delite targets heterogeneous archi-
tectures CPU/GPU but only shared memory architectures. PySke does not target
GPUs yet. But it can run on both shared and distributed memory architectures
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and its set of skeletons is larger than the mentioned approached. Moreover it
supports parallel trees.

Several skeleton libraries exist also for mainstream host sequential program-
ming languages, for example for C++ [45, 24], C [7] or Java [34, 19, 86]. Compared
to these libraries, PySke provides the same set of core classical skeletons and
some original skeletons such as get_partition and flatten. PySke provides
only data-parallel skeletons. The set of skeletons we provide in PySke is a super-
set of a sub-set of the OSL [83] library for C++. Compared to OSL, PySke lacks
a skeleton [84] to manage exceptions in parallel. OSL also provides bh a parallel
skeleton well-suited for bulk synchronous parallelism [81]. PySke does not pro-
vide this skeleton yet. OSL is close of the SkeTo library for C++, but SkeTo [40]
also provides skeletons for multi-dimensional arrays. The current version of
SkeTo does not provide tree skeletons but a previous one did [98]. Recent work
considers a new implementation [117] that is not yet included in the current ver-
sion of SkeTo. Other API, such as SkelGIS [30], are designed for people who
does not have knowledge on HPC, but who needs efficient parallel programs for
scientific applications such as blood flow arterial network [29].

Other approaches for parallel computation

Parallelization of programs is necessary but not trivial. There exist frameworks to
ease their development. MapReduce[36, 80], developed by Google, and written in
C++, split the parallel computation into distributed data. This approach is based
on the map and reduction functions presented in Section 2.1. With this model,
each value is described by a key, and the data with the same keys are treated
in the same processor. A MapReduce process is decomposed into three distinct
steps:

1. Map: each worker applies the same function to its data;

2. Shuffle: the results of the previous step are redistributed;

3. Reduce: the worker reduce the results, and process output data

Figure 4.5 from [80] gives a view of these computation steps.
Unfortunately, MapReduce is not open-source contrary to its Java implemen-

tation Hadoop [5] by Apache. Both have been derived for a more specific com-
putation.

Even if the cores of MapReduce implementations ease parallel computing,
their configuration represents a hard task. Contrary to PySke, they need more
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Figure 4.5 – Computation steps of a MapReduce process
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than the number of processors as parameters. For example, the environment ex-
pects type and amount of resources, especially in Cloud computing (e.g., number
of virtualized machines, or the number of mapper and reducer). Small changes
in the configuration can drastically change the performances. There are studies
about finding an automatic configuration of MapReduce environment, such the
AROMA project [79] with an approach based on machine learning. PySke has the
advantage to be easy to use for every developers. The only needed parameter is
the number of cores to use for computation. Besides, our API has the advantage
of treating tree structures directly, where MapReduce does not.

Other data structures
For a complete a skeletons API, other structures primitives can be implemented
in parallel. First on arrays. The structure is already defined in Python and the
lists primitives fit for the array calculation. Since arrays are lists with additional
property such a fixed size, and a uniformity of element (not necessary with lists
in Python), their implementation is more efficient. We are here not only thinking
about unidimensional arrays. Algebra defining matrices and multidimensional
arrays as constructive elements [116, 38, 42, 114] are well-suited for parallelism.
An global view of these notions are presented in Appendix B.

Graphs are used in many Big Data problems. Networks represent complex
data structures, but used in many domains (e.g., social network analysis). The
traditional way of graph definition (two sets: vertices, and edges) is not very
suited for parallelism. Using a vertex-centric approach instead, as in MapRe-
duce frameworks look better. From MapReduce, Pregel [96, 18, 62], is born for
large graph computation. Similarly, Giraph [1, 22, 64, 72] is an Apache project
implemented from Hadoop for the same goal. They both are designed using a
vertex-centric approach. With this approach, a graph is only defined by a set of
vertices, containing information about incoming and/or outcoming edges.

Appendix C describes this approach with more details. We can imagine a
class PGraph, a list of CVertex, representing a parallel subgraph, communi-
cating with the others to operate on the graph content. Primitives described in
Section C.2 with additional features such as graph modification (e.g, edges or
vertices) or representation transformations (from classical two sets to a vertex-
centric graph, and reciprocally) could be implemented.

Parallel programming is often involved in clustering. Make clusters from a
large set of data in a reasonable amount of time remains a hard problem to
solve. That is why, finding parallel solutions to optimize the computation time
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with PySke is an interesting idea. There exist indexing techniques to avoid use-
less calculations. For example, with a density-based approach for clustering (DB-
Scan [44]), data are stored in grids [61, 135]. A grid is a structure that only gives
an index for cells containing object elements. The points from a data set are or-
dered depending on their relative position. Two closer points will be stored next
to each other. This indexing solution is similar than in [57] and [56]. Since in
DBScan optimizations, a cell of this grid only need informations about its direct
neighbors, we can imagine a distributed data structure PGrid containing cells
with their objects informations (e.g., coordinates of points), and neighborhood
content. The neighborhood content can be all the object informations (e.g., all
the coordinates for exact clusters), or only a part (e.g., the number of elements
by cell in an approximation method). Appendix D gives more details about dif-
ferent approaches we have already explored to compute clusters using indexing
methods.
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In this chapter, we illustrate the different skeletons we implemented in SyD-
PaCC and PySke. We first present examples on trees from SyDPaCC, that have
been executed using BSML and MPI (Section 5.1). Secondly, we use PySke to
define programs on both lists and trees (Section 5.2). We discuss differences be-
tween communications of the different used architecture in Section 5.2.2

The examples are executed on a single shared memory machine, called Titan,
with two Intel Xeon E5-2683 v4 processors with 16 cores at 2.10 GHz, 256Gb of
memory. The used software is the following: Ubuntu Linux 18.04, Python 3.6.7,
mpi4py version 3.0.0, OpenMPI version 2.1.1. To test scalability, experiments have
also been processed on Monsoon, the HPC cluster of Northern Arizona Univer-
sity. The nodes of the cluster have 16 Intel Xeon cores E5-2620 v2 at 2.10GHz,
with a total of 24TB of memory. Individual systems are interconnected via FDR
Infiniband at a rate of 56Gbps. The examples are run in the minimum number of
nodes, with a maximum of 16 cores by node. For example, from 1 to 16 cores we
use 1 node, from 17 to 32 we use 2 nodes, etc.
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Figure 5.1 – Process to obtain an executable from a program specification in Coq

SyDPaCC examples

In this section, we present applications that have been written using SyD-
PaCC. From a specification written in Coq, and defined correspondences, the
function parallel will produce a parallel version of the program. This parallel pro-
gram and all its dependencies are extracted into OCaml code. To exploit this
program, a OCaml script must be written, managing the input and the output
of the program. The BSML compiler compiles ML sources files to bytecode exe-
cutable using MPI. Figure 5.1 illustrates this process.

Height of a Tree

The height of a tree describes the maximum depth that a node can have. The
height of a binary tree can be written with a recursive function with a single-
bottom up computation:{

height Lea f (a) = 1
height Node(b, l, r) = 1 + (l ↑ r)

where x ↑ y computes the maximum of x and y.
This function can be easily defined thanks to the map and reduce functions:

height = (reduce (λ x, l, r ⇒ x + (l ↑ r)))
◦ (map (λ x ⇒ 1)(λ x ⇒ 1))
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We need to prove that (fun (x, l, r) ⇒ x + (l ↑ r)) has the closure property. The
following φ, ψN, ψL, and ψR are used to show that:

φ b = (−∞, b)
ψN l (b1, b2) r = b1 ↑ (b2 + l) ↑ (b2 + r)

ψL (l1, l2) (b1, b2) r = (b1 ↑ (b1 + l1) ↑ (b2 + r), b2 + l2)
ψR l (b1, b2) (r1, r2) = (b1 ↑ (b2 + l) ↑ (b2 + r1), b2 + r2)

The closure property holds only if map has been applied before and transformed
all the values in the tree into 1. Instead of just using numbers for values in the
tree, we specify that the result of the application of map is BTree N {x : N | 1 = x}.
The functions used in the reduce part must consider this change. Thus the signa-
ture of k won’t be (N ∗ N ∗ N)→ N but (N ∗ {x : N | 1 = x} ∗ N)→ N. Same thing for phi
whose the signature N→ (N ∗ N) is replaced by {x : N | 1 = x}→ (N ∗ N). Without this
condition, the closure property does not hold.

To obtain a parallel version of this application, we only need to write
parallel(height).

Properties Count

The properties count application aims at getting the number of elements which
respect a given property. Considering two predicates pL : α→ bool and pN : β→
bool the number of leaves and nodes respecting the properties in a binary tree of
type BTree α β can be implemented as a single-bottom up computation:

count pL pN Lea f (x) = if (pL x) then 1 else 0
count pL pN Node(x, l, r) = if pN x then 1 else 0

+ count pL pN l
+ count pL pN r

The function can be written using the primitives reduce and map:

count pL pN = (reduce (λ(x, l, r)⇒ x + l + r)) ◦ (map fL fN)
with fL = f pL and fN = f pNwhere f p x = if p x then 1 else 0

and the closure property holds for:{
φ b = b ψN l b r = b + l + r

ψL l b r = b + l + r ψR l b r = b + l + r.

The tests have been conducted in the single machine using the count function,
on a tree of 3× 3 matrices of size 223 − 1. The application counts the number
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of orthogonal matrices. The value of m used to split the tree is calculated by
m = 2

√
N

p with N the size of the tree. 30 time measures have been taken on
three kinds of tree: balanced, completely unbalanced and with a random shape.
Figure 5.2 shows the average computation and relative speedup for each type of
tree depending on the number of processors p. These experiments show that the
obtained performances does not depend heavily on the kind of tree.

86



5.2. PySke examples

0

10

20

01 02 04 08 16 24

Number of processors

A
ve

ra
ge

 s
pe

ed
 (

s)

type

balanced

imbalanced

random

Average time for m=2sqrtnp

(s)

●

●

●

●

●

●

4

8

12

16

0 5 10 15 20 25

Number of processors

R
el

at
iv

e 
sp

ee
du

p

type

● balanced

imbalanced

random

Speedup for m=2sqrtnp

Figure 5.2 – Performances of correct count using the Titan machine

PySke examples

We now present applications run with the PySke library on different parallel
data structures. They are executed both on the single shared memory machine
and on the HPC cluster.
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Variance
The first example is the calculation of the variance of a data set. The application
have been processed using PySke ran 30 times.

The execution time reported is the average over the 30 experiments of the
maximum value of the execution times of all the MPI processes. Note that unlike
the default of the timeit Python library, we do not exclude garbage collection
of our timings. variance is defined as follows.

variance px = (reduce (+) (map (λ x→ (x - mu)2) px)) / n
with n = size px
and mu = (reduce (+) px) / n

Since the computation of variance involves several skeletons and communi-
cations, it is a good benchmark to test PySke performances. The PySke code is
given page 69.

We processed the variance calculation on a distributed list of 5 ∗ 107 integer
elements. Experiments on this application were conducted on the shared memory
machine and Figure 5.3 presents the calculation time and the relative speed-up
depending on the of processors used for calculation.

The scalability is of course limited depending on the size of the list and the
machine resources. We can expect better results with larger datasets. The results
show that with more than 32 cores, the relative speed-up decreases. We expect
this drop to come from a problem of scheduling: the execution times for a few
processes are double than the execution time of most other processes. It is very
likely two MPI processes are scheduled on the same core. We did not observe
such a phenomenon on the distributed memory platform (Figure 5.4). On the
cluster, the results are two times slower. However, there is no scalability prob-
lem anymore, even until 256 cores. We discuss about about these performance
differences in section 5.2.2
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89



Chapter 5. Examples and experiments

0

30

60

90

001 002 004 008 016 032 064 128 256

Number of processors

A
ve

ra
ge

 s
pe

ed
 (

s)

   Average time

(s)

●●
●

●

●

●

●

●

●

0

50

100

150

200

0 100 200

Number of processors

R
el

at
iv

e 
sp

ee
du

p

Figure 5.4 – PySke scalability: Variance on Lists using Monsoon

Prefix numbering
Numbering elements in a non linear structure such as trees is not trivial. We
define prefix, a composition of map, uAcc and dAcc for numbering nodes in the
prefix traversing order.
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prefix t = let t′ = uAcc(k, map( f , id, t))
in dAcc(gL, gR, 0, t′)
where f (a) = (0,1)

k((ll,ls),b,(rl,rs)) = (ls, ls + 1 + rs)
gL(c,(bl,bs)) = c + 1

gR(c,(bl,bs)) = c + bl + 1

To be implemented in parallel, closure properties of k and of (gL, gR) must be
respected. Auxiliary functions for k is given as k =< φ, ψN, ψL, ψR >u with

φ(b) = (1,0,0,1)
ψN((ll,ls), (b0,b1,b2,b3), (rl,rs))

= (b0 × ls + b1 × (ls+1+rs) + b2, ls+1+rs + b3)
ψL((l0,l1,l2,l3), (b0,b1,b2,b3), (rl,rs))

= (0, b0 + b1, (b0 + b1)× l3 + b1 × (1+rs) + b2, l3+1+rs + b3)
ψR((ll,ls), (b0,b1,b2,b3), (r0,r1,r2,r3))

= (0, b1, b1 × r3 + b0 × ls + b1 × (1+ls) + b2, r3+1+ls + b3 )

About gL and gR, the closure property is respected by

(gL, gR) =< λ(bl, bs)⇒ 1, λ(bl, bs)⇒ bl + 1,+,+ >d

In PySke, numbering the nodes of a variable T implemented as a parallel tree
can be computed by:

def k((ll,ls), b, (rl,rs)): return (ls, ls + 1 + rs)
initial = T.map(lambda a: (0,1),lambda x: x)
processed = initial.uacc(k, phi, psiN, psiL, psiR)
prefixed = processed.dacc(gL, gR, 0, phiL, phiR, psiU, psiD)

We have performed the tests on three types of binary tree of size 224 − 1 =
16777215: a balanced tree, and a tree with a random shape. All the trees have
been linearized using m = 53600.

The experiments have been first processed on the Titan machine described
before. Figure 5.5 gives a view of these results. Same as the variance application
on this machine, the results show that with more than 32 cores, the relative speed-
up decreases. We expect the same about scheduling.

To test scalability, they also have been processed on Monsoon, the cluster of
Northern Arizona University. Figure 5.6 shows the results of these experiments.
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Figure 5.5 – PySke performances: Prefix numbering on Trees using the Titan machine
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Figure 5.6 – PySke scalability: Prefix numbering on Trees using Monsoon

The results of the parallel implementation using PySke skeletons show a good
scalability until 128 processors. The computation times of processors are more
balanced between for balance tree because the more predictable distribution of
the tree. However, even with 256 processing units, the performances are increas-
ing. Python implies an evident performance penalty, especially on Monsoon. For
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example, compared to C++ library SkeTo, the same program is slower but the rel-
ative speed-up increases similarly. Figure 5.7 shows a comparison of the relative
speed-up on same executions of the prefix program. We do not have a compar-
ison of the execution time because the values for SkeTo come from a paper that
was reporting performances for a very different machine.
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Figure 5.7 – Comparison of relative Speed-Up of the same program on SkeTo and PySke

Discussion In both examples, the scalability with the cluster was much bet-
ter than a single machine. It is interesting to wonder why. The speed of commu-
nications between processors are not necessary the same depending on the archi-
tecture. The cluster Monsoon interconnects the systems using FDR Infiniband at
a rate of 56Gbps. This super fast way of communication tackle the usually loss
performances due to communication time.

In a single processor, with several core, the data are communicated almost
instantly. However, when a cluster is used for computation, the traditional hard-
ware for communications is not as fast as in a single processor. Even if the ma-
chines are individually more effective, the communication time can implies worst
global performances. Performances on Monsoon are not as good as they are with
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a single machine because processors in the cluster are from an older generation,
the nodes of the cluster and the cores of the processors are shared by the different
users. Nonetheless, because of the FDR Infiniband, we can expect to never get a
scalability decrease while adding processors could have a significant impact on
the single machine.
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Conclusion

In this thesis, we addressed some difficulties of writing parallel programs
without errors. The main objectives were to propose ways to make parallel pro-
gramming more systematic. We thus proposed two approaches:

• PySke, a library of skeletons in a high-level programming language, pro-
viding algorithmic patterns for distributed lists and trees.

• An extension of SyDPaCC allowing to develop parallel programs on parallel
linearized trees, correct-by-contruction, and simply by writing sequential
programs on binary trees.

We went through examples to illustrate how easy it is to write parallel pro-
grams with skeletons. A beginner developer that is not used to parallel pro-
graming needs higher-level abstractions. Using skeletons is more attractive for
programmers that low-level APIs: at first they can ignore the parallel implemen-
tations of the skeletons, and the possible optimization. Each of the proposed
approaches has its own advantages.

With SyDPaCC, programmers can write and reason about programs using
Coq. In this case, a programmer can write first a sequential implementation of a
program, and an implementation using provided primitives. The two versions of
the same program can be proved equivalent to ensure that the one written with
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skeletons is correct. Alternatively, the programmer can write only the sequential
implementation and rely on the provided equivalences to automatically obtain
an equivalent correct-by-construction parallel program.

PySke does not provide tools for automatic parallelization, but is very simple
to use. Besides, since the API is written in Python, it is easier to write new skele-
tons. For this reason, PySke provides more parallel patterns, and can be extended
faster to handle more parallel problems. Being based on Python, the number of
potential users exceeds by far the number of potential users of SyDPaCC.

Future work

Our future works will be focused both on PySke and SyDPaCC.

• The PySke API can be completed with other skeletons. First, the already
defined structures can provide more parallel patterns, especially on lists
[40, 43, 23]. Also, other structures with their skeletons such as matrices [38],
or graphs [41] can be implemented in a future version of PySke. With
these additional structures, more applications could be written. For ex-
ample, the C++ skeleton library SkelGIS [29] performed scientific simu-
lations using skeletons. Providing more structures and more skeletons will
increase productivity for sure, but it can also decrease the performances
if the skeleton combinations are not optimized. Optimizations can be au-
tomatically performed on the specifications using program transforma-
tion [53, 108, 114, 70]. Besides, optimizations could be processed using a
cost model for the execution of skeletons [2]. On the implementation side,
the mpi4py library has been particularly designed and optimized for nu-
meric arrays of the NumPy [112] library. We plan to perform tests using
application involving contiguous NumPy arrays. Since we are only using
homogeneous parallel structures, arrays would be better to use for com-
putation and communications. The mpi4py library is not the only one that
allows parallel programming in Python. We plan to comparatively study
the different Python programming libraries1, both from the runtime per-
formance perspective but also from the productivity perspective. Halstead
metrics [63] and similar metrics are well-designed to evaluate the effort
needed to write the same program in different ways. It already has been
used by Légaux et al. [82], and Coullon et al. [30], and we plan to use such

1https://wiki.python.org/moin/ParallelProcessing
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metrics to provide a comparison of PySke with other parallel programming
libraries.

• Secondly, the proposed extension of SyDPaCC is not complete yet. First of
all, the correspondences for the map and reduce skeletons are not all proved
yet. Especially reduce that needs the formalization of other aspects such as
the shape of a global structure from the list of segments. Besides, we plan
to design and proof of correctness of two additional skeletons on trees:
upwards accumulation and downwards accumulation. We also plan to de-
velop and experiments with several new applications. For the moment our
extension is limited to binary trees. It is possible to introduce rose trees
and to provide a type correspondence between rose trees and binary trees
and associated functions correspondences. Finally, to automatically opti-
mize programs, we plan to implement the diffusion theorem and the third
theorems on trees as they already are for lists on SyDPaCC. These theorems
are presented in Appendix A
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Diffusion theorems

The diffusion theorem can be generalized to binary trees [70, 100]. If h is a
function on binary trees defined using ⊕ an associative and commutative binary
operator, ⊗ an associative operator, and four functions k1, k2, g1, g2, with the
following recursive way

h Lea f (a) c = k1(a, c)
h Node(b, l, r) c = k2(b, c)⊕ (h l (c⊗ g1 a))⊕ (h r (c⊗ g2 a))

then it can be transformed into

h x c = (reduce (⊕) (map k1 k2 ac))
with gL c b := c⊗ (g1 b)

gR c b := c⊗ (g2 b)
cs := dAcc gL gR c x
ac := zip x cs

Third homomorphism theorem

The third homomorphism theorem is also defined on binary trees [108]. How-
ever, it necessitates more types and structures than just the basic ones already
defined. First, a type Either A B designing the sum of two sets A and B:

Either A B = Le f t(A) | Right(B)
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Figure A.1 – A zipper representing a binary tree using a path from the root to the black leaf

For shorthand, Le f t and Right are respectively replaced by L and R.
The third homomorphism on lists is defined from the possibility of comput-

ing a list with leftward and rightward manners. Here, because the trees are rep-
resented with a non-linear type, we will talk about upward and downward com-
putations. Using Huet’s zippers [71], we cut a binary tree following a path from
the root to a selected leaf. We show an example of splitting a binary tree in Fig-
ure A.1.

A Zipper of a BTree α β is then a list of Either (β, BTree α β) (β, BTree α β)
containing the whole tree. Either is here used for its constructors L and R defining
if a subtree is a left or a right children of its ancestor.

Considering z2t : Zipper → BTree α β, a function h′ : Zipper → B is said to
be a path-based computation of h : BTree α β→ A if there exists ψ : B→ A such
that:

ψ ◦ h′ = h ◦ z2t

This equation just states an equivalence between calculation on binary trees and
zippers.

Because the Zipper representation preserves the hierarchical order of a BTree,
an upward computation (resp. downward computation) on a binary tree is a
leftward computation (resp. rightward computation) on its zipper representa-
tion. In other words, a function h′ : Zipper → B, the path-based computation
of h : BTree α β → A, corresponds to an upward computation if there exists
⊕ : Either (β, A) (β, A)→ B→ B such that:

h′ ([L(n, t)] ++ x) = L(n, h t)⊕ h′ x
h′ ([R(n, t)] ++ x) = R(n, h t)⊕ h′ x
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A downward computation can be defined similarly using the existence of
⊗ : Either (β, A) (β, A)→ B such that:

h′ (x++ [L(n, t)]) = h′ x⊗ L(n, h t)
h′ (x++ [R(n, t)]) = h′ x⊗R(n, h t)

The third homomorphism theorem on trees states that a function h is de-
composable into a divide-and-conquer algorithm iff there exists a path-based
computation of h that is both downward and upward.

In other words, a function h′ : Zipper → B, the path-based computation of
h : BTree α β→ A that is both downward and upward can be decomposed using
ψ, φ, and � such that the following equations hold.

φ L(n, h t) = h′ [L(n, t)]
φ R(n, h t) = h′ [R(n, t)]

a � b = h′ (h′◦ a++ h′◦ b)
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It is interesting to see how the Bird-Meertens Formalism has been extended for
multiple dimensions structures such as matrices. There exist different approaches
for representing them.

Two Multidimensional arrays in Abide Trees

Following constructive programming theory [116], a matrix can be defined
using three constructors: the singleton |a|, representing a matrix with only the
element a, and two concatenation operators:

• u ◦− d representing u above d

• l ◦
−

r representing l above r

From this definition, we can define several representations of the same matrix:[
1 2
3 4

]
= (|1| ◦

−

|2|) ◦− (|3| ◦
−

|4|) or (|1| ◦− |3|) ◦
−

(|2| ◦− |4|)
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Primitives
The primitives on two-dimensional arrays are intuitive[38, 42]. The first primitive,
map, applies a function f to every element of the matrix.

map f

 x11 . . . x1n
... . . . ...

xm1 . . . xmn

 =

 f x11 . . . f x1n
... . . . ...

f xm1 . . . f xmn


The reduce primitive takes two binary operators: ⊕ for reducing rows locally,

and ⊗ to reduce the rows globally.

reduce⊕⊗

 x11 . . . x1n
... . . . ...

xm1 . . . xmn

 = (x11 ⊕ . . .⊕ x1n)⊗ . . .⊗ (xm1 ⊕ . . .⊕ xmn)

The map2 common operation zip two matrices into a single one using a func-
tion f . It can be defined as follows.

map2 f

 x11 . . . x1n
... . . . ...

xm1 . . . xmn


y11 . . . y1n

... . . . ...
ym1 . . . ymn

 =

 f (x11, y11) . . . f (x1n, y1n)
... . . . ...

f (xm1, ym1) . . . f (xmn, ymn)


The scan operations scan and rscan are describing an accumulation of val-

ues. The accumulation by scan proceeds a left-to-right computation for rows,
and a top-to-bottom for columns, to the calculated cell. rscan starts its computa-
tion from the calculated element, and go through the matrix with a left-to-right
computation for rows, and a top-to-bottom for columns to the end of the two-
dimensional array. Their definitions are given below.

scan⊕⊗

 x11 . . . x1n
... . . . ...

xm1 . . . xmn

 =

y11 . . . y1n
... . . . ...

ym1 . . . ymn


where yij = (x11 ⊕ . . .⊕ x1j)⊗ . . .⊗ (xi1 ⊕ . . .⊕ xij)

rscan⊕⊗

 x11 . . . x1n
... . . . ...

xm1 . . . xmn

 =

 z11 . . . z1n
... . . . ...

zm1 . . . zmn
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where zij = (xij ⊕ . . .⊕ xin)⊗ . . .⊗ (xmj ⊕ . . .⊕ xmn)

Homomorphism
Considering two binary associative operators ⊕ and ⊗, h is a homomorphism on
a two-dimensional array if

h |a| = f a
h (u ◦− d) = (h u)⊕ (h d)

h (l ◦
−

r) = (h l)⊗ (h r)

This homomorphism on matrices is denoted h = (| f ,⊕,⊗|).

Generalization

These notions have been generalized for an arbitrary number of
dimensions[114]. Instead of considering only two concatenation operations,
the operator ++k is used for generalizing the concatenation of matrices on the
kth dimension. If d = 1, then the array is a list, and if d = 2, the array is matrix.
The equivalence of operations is given below.

Equivalence #Dimensions Operators
list d = 1 ++1 = ++ =

◦−

matrix d = 2 ++1 =

◦− and ++2 = ◦−

A function h on d-dimensional multi-dimensional arrays is called a multi-
dimensional homomorphism iff there exist d combine operators ⊕1, ...,⊕d such
that for each
k ∈ [1, d],

h (a ++k b) = h a ⊕k h b
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Vertex centric approach

Two main approaches are used for defining graphs. The common approach
is to use a pair of sets: V containing the vertices, and E the edges. A graph G is
then denoted by G = (V, E). This approach is not very convenient for defining
parallel programs. Skillicorn has proposed another approach in [120] to construct
graphs.

• ◦ : A→ Graph A describes a vertex with a single value;

• ◦−◦ : Graph A→ Graph A→ Graph A joins two graphs by an edge;

• ◦4◦ : Graph A→ Graph A adds an additional edge to graph.

This approach is theoretical, and the simple construction does not give enough
information about the actual structure of an instance, but it is the foundation of
the vertex-centric approach.

Most of the frameworks for parallel computation on graphs [76, 77, 136], such
as Google’s Pregel [18, 62, 96] and Giraph [1, 22, 64, 72], use the vertex-centric
approach, already known as the think like a vertex model [115, 113]. With this
approach, a graph is only defined by a set of vertices, containing information
about incoming and/or outcoming edges.
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Fregel

Writing Pregel programs is tedious. Emoto et. al. have proposed a functional
model of Pregel, called Fregel [107, 41], to increase the productivity of parallel
programs on large-scale graphs. Their functional model is written with Haskell
style.

However, Fregel has differences with Pregel. First, the model does not allow
the modification of the shape of a graph. It only allows the modification of the
content of the vertices. Secondly, in the original model of Pregel, the communi-
cations are started by the transmitter. In Fregel it is the contrary. The recipients
are peeking the information.

Data types

The functional model proposes three data types to describe graphs.
data Vertex a b =

Vertex { vid :: Int, val :: a, is :: [Edge a b]}
type Edge a b = (b, Vertex a b)
type Graph a b = [Vertex a b]

A vertex is described by an integer id, a value and a list of incoming edges. The
edges are pairs of weight and source for incoming edges. An example of a graph
construction is presented in Figure C.1.

Functional DSL

To modify a graph content, Fregel provides makeGraph a function that takes
two arguments: a graph g and a list of values r, and returns a graph with the
same shape of g but with values of r. An example of computation is presented in
Figure C.2

Since the status (active/inactive) of a vertex is not represented in Fregel, the
termination of a program is modeled by the type Termination where Fix
means a steady state, Iter specifies the number of iterations to perform, and
Until means the program must terminate when the graph respects a given pred-
icate.
data Termination a = Fix | Iter Int | Until (a → Bool)

The function termination takes the first element of a list that matches with
the termination condition. In Haskell, a list is possibly infinite, and can be defined
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g = let v1 = Vertex 1 A []
v2 = Vertex 2 B [(3,v1)]
v3 = Vertex 3 C [(2,v2)]
v8 = Vertex 8 H []
v6 = Vertex 6 F [(6,v8)]
v7 = Vertex 7 G [(5,v8)]
v5 = Vertex 5 E [(2,v6),(3,v1)]
v4 = Vertex 4 D [(2,v3),(3,v5),(5,v7),(9,v1)]

in [v0, v1, v2, v3, v4, v5, v6, v7, v8]

Figure C.1 – Example of graph construction in Fregel
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v0

v1

v2

v3

v4

g := [v0, v1, v2, v3, v4]
l := [true, true, true, false, false]

v0

v1

v2

v3

v4

g’ := makeGraph g l = [v0, v1, v2, v3, v4]

Figure C.2 – Example of makeGraph computation

as a stream. Even using termination, a function on graphs not necessarily
terminates.
termination :: Eq a ⇒ Termination a → [a] → a
termination Fix xs =

fst . head . dropWhile (\(a,b) → (a /= b)) $
zip xs (tail xs)

termination (Iter n) xs = head (drop n xs)
termination (Until p) xs =

head $ dropWhile (not . p) xs

The four functions of Fregel are the following:

• gmap and gzip: respectively equivalents of map and zip defined on the
other data structure;

• giter: An iterative function that applies gmap until termination;

• fregel: An iterative function more efficient than giter that does not ma-
nipulate the graph but only its values. From an iteration to another, fregel
keeps previous and current values, and an input high-order function step
to compute the values for the next step. When the termination condition is
reached, the input graph is modified and finally returned.

These four functions are described as follows.
gmap :: (Vertex a b → r) → Graph a b → Graph r b
gmap f g = makeGraph g (map f g)

gzip :: Graph a1 b → Graph a2 b → Graph (Pair a1 a2) b
gzip g1 g2 =

makeGraph g1 (map2 (\u v → Pair (val u) (val v)) g1 g2)
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giter :: (Eq r, Eq b) ⇒ (Vertex a b → r) → (Graph r b → Graph r b) →
Termination (Graph r b) → Graph a b → Graph r b

giter init iter term g =
let g0 = gmap init g

gs = iterate iter g0
in termination term gs

fregel :: (Vertex a b → r) → (Vertex a b → (Vertex a b → r) →
(Vertex a b → r) → r) → Termination (Graph r b) → Graph a b →
Graph r b

fregel init step term g =
let rs0 = map init g

f rs_old = let rs_new = map (\v → step v prev curr) g
prev u = rs_old !! (vid u)
curr u = rs_new !! (vid u)
in rs_new

rss = iterate f rs0
in termination term (map (makeGraph g) rss)
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DBScan

Many domains use Density-Based Spatial Clustering of Applications with
Noise (DBScan) [44]. The performance of the DBScan algorithm has been im-
proved thanks to different techniques such as parallel implementation based on
indexing techniques [61, 135].

The points are clustered using two parameters: (i) ε, an arbitrary distance
used to find the neighborhood of a point, and (ii) minPts, the minimum number
of points within ε-distance to create a cluster. The most common approach is to
compare the distance points to points to define which ones can be in the same
cluster. The main idea is, from a point in a database, look for its ε-neighborhood,
and check that there are at least minPts points. If there is, the point is a member of
a cluster. To find every point of this cluster, we record the ε-neighborhood point-
by-point from the ones which are already in the same cluster. If a point doesn’t
have minPts ε-neighbors, it is considered as noise. The distance calculation can
be made in different ways, but it used to be the Euclidian natural distance:

disteuclid(A, B) =
√

∑dim
i=1(xAi − xBi)2
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where xAi (resp. xBi) is the value of the point A (resp. B) for the ith dimension. An
outline of the expression of DBScan [44] is presented in Algorithm 1. The algo-
rithm takes several variables as input: (i) the dataset D of points to be clustered;
(ii) the distance ε to find neighborhood of a point; (iii) the minimum number
of points, minPts, to consider a cluster; and (iv) a function to calculate distance
between points.

To ensure better performance for the research neighbors, an index I of the
points used to be created before the execution of DBScan. It is then passed as an
argument of the function and is used in NeighborSearch. The algorithm examines
all points P in D that have not been visited yet (label(P) 6= unde f ined). The
neighbors of P are stored in a set N. If N is large enough (|N| ≥ minPts), P
is considering as starting a new cluster. P is a noisy element otherwise. All the
neighbors are explored. Two cases can happen. A neighbor Q is either already in
a cluster, and then we don’t treat it, or Q is now a member of the same cluster
than P. If Q is not noise, and has enough neighbors to form a cluster, its neighbors
are also members of the same cluster. The output of the algorithm is a label for
each point of the dataset. It is either Noise or the identifier of a cluster.

Indexing

Since the datasets are extensive, it is convenient to make the data more acces-
sible. We outline in this Section an indexing method to facilitate the data access
and remove useless calculation. The indexing is similar than in [57] and [56] so-
lutions. A grid index is appropriate to distance calculation. By making cells with
ε side squares, we are sure that all the points within ε-distance are contained
in the direct neighborhood of the current cell. This approach is similar to the
method used for trajectory calculations [58]. On a two-dimensional dataset, the
points from the points dataset D are defined by two coordinates: x and y. The
two-dimension grid is represented with several arrays. An example is given in
Figure D.1.

The array A is a lookup array of the dataset D, respecting the spatial position
of the elements. In other words, the points are sorted to make them near other
spatially close elements. A linearized id defines each cell. The array B contains
the id of the non-empty cells of the grid. Array G, which has the same length of
B is a lookup array giving information about the contained points of the cells.
For each cell, contained at the position h in B, two values are defined: Ah

min and
Ah

max. These values define the position in A of the points contained in the cell h.
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Algorithm 1 The DBSCAN Algorithm

1: procedure DBScan(D, ε, minPts, dist)
2: C ← 0
3: for each points P ∈ D do
4: if label(P) 6= unde f ined then
5: continue
6: end if
7: N ← NeighborSearch(D,ε,P,dist)
8: if |N| < minPts then
9: label(P)← Noise

10: continue
11: end if
12: C ← C + 1
13: label(P)← C
14: S← N\{P}
15: for each points Q ∈ S do
16: if label(Q) = Noise then
17: label(Q)← C
18: end if
19: if label(Q) 6= unde f ined then
20: continue
21: end if
22: label(Q)← C
23: N ← NeighborSearch(D,ε,Q,dist)
24: if |N| ≥ minPts then
25: S← S ∪ N
26: end if
27: end for
28: end for
29: end procedure
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Appendix D. Density-based spatial clustering of applications with noise
(DBScan)

Figure D.1 – Indexing of points from a dataset D. A is the lookup array to D, G the index array
and B the lookup array of G [?]
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Figure D.2 – Example of overlapping areas from points of cell with the cells of the neighborhood

For example, considering the example in Figure D.1, the cell with the lin-
earized id 22, at the 6th position, contains the points from 14 to 15 in A, that is
the points p26 and p7.

DBScan by approximation

We propose another approach based on approximation that can be easily par-
allelized. The decision of merging the cluster of a given cell, and the one of a
neighbor cell which contains nc point objects are made with the following for-
mula:

d = Ao
Ac
∗ nc ∗ p

with Ao, the overlapping area of a circle of radius ε from a point and the cell,
and Ac, the area of a cell, defined by ε2. Because the distribution of points is not
necessarily uniform, we need a probabilist constant p to make our decision more
or less strict. If there exists a point within the current analyzed cell such that
d ≥ minPts, the neighbor cell is considered in the same cluster. Figure D.2 shows
an example of the possible overlapping areas from points within a cell.
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Figure D.3 – Two cases of overlapping area calculation

The calculation of Ao, the overlapping area, depends on the cell position.
We consider two types of cell: the corners, and the centered cells. In Fig-
ure D.2, C1, C3, C7, C9 are corners, while C2, C4, C6, C8 are centered cells. Fig-
ure D.3 presents two simple cases when these overlapping areas are defined.
They are not necessarily defined, depending on the reference point. If one of
the coordinates corresponds to a limit of the cell, the opposite neighbor wont
be covered by its circle. In both cases, considering A=(xA, yA), B=(xB, yB) and
P=(xP, yP), R is defined by
R = (xR, yR) = ( (xA+xB)

2 , (yA+yB)
2 ). We consider h the distance from P to R. Then,

the area a1 is equal to

a1 =
∫ −h sin(θ/2)

h sin(θ/2)

∫ h cos(θ/2)√
h2−x2 dy dx

with θ = 2 ∗ arccos( h2

ε )

which can be simplified to

a1 = 1
2 h2(θ − sin(θ))

The area a2 is calculate using the triangle area formula. Finally, the overlapping
area of a corner is simply defined by a1 + a2.

Calculate the overlapping area of a centered cell is equivalent to calculate the
area of global side and remove the two corner areas.

For example, using Figure D.2, calling Ai the overlapping area within Ci, we
have the following result

A2 = overlapping((C1 ∪ C2 ∪ C3))− A1 − A3.

122



D.4. Other approaches

To design an approximation for Dbscan, we have used the indexing method
combined with the overlapping area. The specific entry parameters of the algo-
rithm are the grid resulting from the indexing method, and a probabilistic factor
for the decision taking.

We start by making a set for each cell, to contain the linear ids of the cells
which will be in the same cluster. To make clusters, every non-empty cell is
considered globally. The goal is to merge cells that have enough points (greater
than minPts), within an ε distance from a point, in the same cluster. If two cells
appear to be in the same group, they have to merge their cluster. That is, all
the cells already defined as being in the same cluster than the current analyzed
one, must update their set of ids by adding the new one. At the end of the
execution, each cell has a set of several ids. To identify the different clusters, the
maximum linear id of each set is kept. This choice is totally arbitrary. It could be
the minimum one.

An outline of the algorithm is presented in Algorithm 2. The variables taken
as input are: (i) the index G as a grid; (ii) a probabilistic factor for the decisions;
(iii) the distance ε to find neighborhood of a point; (iv) the minimum number of
points minPts. We can notice that we don’t need to calculate distances anymore,
then the dist parameters from Algorithm 1 has been removed.

Other approaches

Many approaches have addressed improvement of DBScan performances [12,
55, 57, 65, 134]. These optimizations are made using parallelism. In [65], a MapRe-
duce [36] implementation of DBScan is proposed. The program is split into two
parts. First, small local clusters are made using split data distributed on the
nodes. A reduction of these results are made in a second part to get bigger clus-
ters. The clusters are first merged and then relabeled to obtain a final result. It is
common to make several DBScan execution in science fields (e.g., space physics
and aeronomy). The execution variants differ by their input parameters. It ap-
pears that several results can be reused during the variant computations. [55]
presents very good optimizations for DBScan based on the use of commonali-
ties on multithreading programs. Most of the optimizations are based on GPU
computation to take advantage of the GPU architecture. However, [57] presents
a grid-based hybrid approach of DBScan, using both GPUs in conjunction with
multicore CPU. Two GPU kernels are used. The first one is used to compute the
ε-neighborhood of the points without using shared memory. Hybrid-Dbscan
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Appendix D. Density-based spatial clustering of applications with noise
(DBScan)

Algorithm 2 Approximation of DBSCAN Algorithm

1: procedure Approximate_DBScan(G, factor, ε, minPts)
2: for each non-empty cell C ∈ G do
3: cluster(C)← {C}
4: end for
5: for each non-empty cell C ∈ G do
6: N ← neighbors(C)
7: for each point P ∈ C do
8: A← overlapping_around(P)
9: for i in 0 .. |A|-1 do

10: np← N[i].nb_points ∗ A[i]
(ε2)
∗ f actor

11: if np ≥ minPts then

12:
cluster(C)← cluster(C)

∪ {N[i]};
13: for each cell Cn ∈ cluster(C) do

14:
cluster(Cn) ← cluster(Cn)

∪ {N[i]};
15: end for
16: end if
17: end for
18: end for
19: end for
20: for each non-empty cell C ∈ G do
21: cluster(C)← maxid(cluster(C))
22: end for
23: end procedure
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D.4. Other approaches

takes advantage of the shared memory on the GPU to page the cells, before mak-
ing distance calculations. With CUDA-DClust [12], Böhm et al. take advantage
of the extremely high parallelism of the GPU, and its low cost of memory trans-
fer. The presented algorithm starts by creating chains of points in parallel on
the GPU. The algorithm keeps track of collisions, that is two chains belong to
the same cluster. The chains are finally merged into clusters based on the colli-
sions. This approach is very similar than Yaobin et al.’s in [65] This main idea is
reused in the Mr.Scan implementation [134], an algorithm which performs ker-
nel optimizations by reducing host-GPU interaction. Another optimization for
DBScan implementation based on GPU calculation is discussed in [4]. An index
of the data is generally used on these different approaches to reduce the time of
computation, and help to remove useless calculation. On a grid-based algorithm
approach, the points are stored into cells. The points from a cell are compared
to the ones in the neighbor cells. The simple approach is to compare each cell
with all of its neighbors. [56] presents an optimization of these comparisons, by
non-duplicating the computation, based on the symmetry of the calculation. Gan
and Tao proposed an approximate sequential solution [50, 51], faster to compute
than DBScan, and with outstanding accuracy.
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