
Digital Signatures using Elliptic Curve
with Extended Galois Fields

Jolan Philippe
Northern Arizona University, SICCS

Flagstaff, AZ. USA
jp2589@nau.edu

Abstract

The interesting algebraic structures provide beautiful properties which can be ap-
plied to cryptography science. We present in this paper how the Galois Fields can be
applied to generate a digital signature (DSA) easily. We cover in this paper, all the
necessary aspects to thoroughly understand the strengths of DSA created from elliptic
curve cyclic based on extended Galois Fields.

1 Introduction

In the real world, we use to sign a paper document to ensure its authenticity. In computer
science, the same approach is used to certify the integrity, the authentication and non-
repudiation of data such as documents, messages, or identification. Digital signatures are
gaining in importance around the world, and are now considered as the same legal level with
handwritten ones. Nowadays, sensitive data (e.g., all the banking information, including
transactions) are transmitted through networks. For this reason, the data must be secured,
and be protected from malicious attacks. There exist different encryption techniques, more
or less reliable, to hide the content of the messages [7, 13, 15]. Cryptography has been
used during History, especially on message transmissions during conflict periods [19]. The
encrypted messages passing is based on a key approach, that is used to create a cipher from
plain text. Depending on the technique, the key can be symmetrical or asymmetrical. In
other words, the key to encrypt the data is not necessarily the same one to decrypt. Digital
signatures are based on the second approach. A user has a pair of two related keys. The
first one, the private key, is used to encrypt data, while the second one, the public key, is
used to decrypt data. In the context of DSA, the private key is used to sign the data, and
the public key is used to check the authenticity of the signature. The finite field arithmetic
is often used to manipulate signatures. The finite fields are cyclic groups of integers [6, 14],
that is a field which contains a finite number of elements. The combination of arithmetic
tools and cryptography makes robust signatures for exchanged messages.

To contribute to this field of study, we propose a new approach to create a digital sig-
nature, based on an extension of the prime Galois Fields. This paper is presented as follow.
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Section 2 presents the strong Galois Field algebra, based on prime numbers. The elliptic
curves geometry is described in Section 3. We cover the digital signature theory and its
application using elliptic curves with Extended Galois Field in Section 4. Section 5 gives an
overview of other ways to create and verify the digital signature. Finally, Section 6 concludes
the paper and present future works.

2 Galois Fields

2.1 Finite Fields

An algebraic structure on a set S is defined by its collection of finite operations. There exist
three types of carrier sets.

The groups are defined by the operator • such as:

– the operator respects closure property: ∀a b ∈ S, a • b is also in S

– • is associative: ∀a b c ∈ S, a • (b • c) = (a • b) • c;

– there exists an identity element ι•: ∀a ∈ S, a • ι• = ι• • a = a

– all elements have an inverse: ∀a ∈ S,∃a−1, a • a−1 = ι•

If • respects commutativity, the group is called an abelian group. The operator • used to
be written with ⊕. The dual operator 	 is then defined such that a	 b = a⊕ b−1

The rings are defined with the same properties. In addition to ⊕ and 	, a ring has a
closed, and associative operator ⊗ paired with its neutral element ι⊗. In the definition of
the rings, ⊕ and ⊗ are distributive, that is:

– a⊕ (b⊗ c) = (a⊕ b)⊗ (a⊕ c);

– a⊗ (b⊕ c) = (a× b)⊕ (a× c).

The fields extend the rings with the commutative property of ⊗ and an operator ÷©

such that

– a⊗ a−1 = ι⊗;

– a−1 = ι⊗ ÷© a;

– a ÷© b = a⊗ b−1.

The Galois fields are fields defined with a prime number p of positive natural number
and are written GFp. The operators for ring sets are defined by:

– a⊕ b = a+ b mod p with ι⊕ = 0;
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– a	 b = a− b mod p with ι	 = 0;

– a⊗ b = a ∗ b mod p with ι⊗ = 1.

The inverse operator of ⊗, ÷© , is defined such that a ÷© b ≡ a ∗ b−1 mod p with b−1 the
number which gives the following result: b−1 ∗ b ≡ b ∗ b−1 ≡ 1 mod p

2.2 Extended Galois Field

The extended Galois fields are defined with two parameters: (i) a prime number p,(ii) and
an integer m. GFpm defines a field containing pm elements. An interesting extension of the
Galois fields are presented with p = 2 and are written with polynomials A(x) =

∑0
i=m−1 ai ∗

xi; ai ∈ GF2 = {0, 1}. The polynomial A is then written A = (am−1, ..., ai, ..., a0)

Example 1
With p = 2 and m = 3 (GF23), A(x) = a2x

2 + a1x
1 + a0

Binary 000 001 010 011 100 101 110 111
Polynomials 0 1 x x+ 1 x2 x2 + 1 x2 + x x2 + x+ 1

We can notice that, for p = 2, the operators ⊕ and 	 are equivalent. It means a	b = a⊕b
that is a+ a ≡ a− a mod p = 0.

From the definition of the extended Galois Field, we have the following results:

Result 1 (Addition)
∀p ∈ P, m ∈ N, A(x) B(x) C(x) ∈ GFpm , A(x) ⊕B(x) = C(x) =

∑m
i=0 ci ∗ xi

with ci ≡ ai + bi mod p

Result 2 (Subtraction)
∀p ∈ P, m ∈ N, A(x) B(x) C(x) ∈ GFpm , A(x) 	B(x) = C(x) =

∑m
i=0 ci ∗ xi

with ci ≡ ai − bi mod p

Result 3 (Equivalence)
∀m ∈ N, A(x) B(x) ∈ GF2m , A(x) ⊕B(x) = A(x) 	B(x)

For each extended Galois Field GFmp , an irreducible polynomial P(x) is defined from
AES [1, 16]. This polynomial is defined on GFpm+1. Using P(x), we can now define the
multiplication, the inverse and the division operations.

Result 4 (Multiplication)
∀p ∈ P, m ∈ N, A(x) B(x) C(x) ∈ GFpm P(x) ∈ GFpm+1,
C(x) = A(x) ⊗B(x) ≡ A(x) ∗B(x) mod P(x)

Result 5 (Inverse)
∀p ∈ P, m ∈ N, A(x) ∈ GFpm P(x) ∈ GFpm+1, A(x) ⊗ A−1(x) ≡ 1 mod P(x)

Result 6 (Division)
∀p ∈ P, m ∈ N, A(x) B(x) C(x) ∈ GFpm P(x) ∈ GFpm+1,
C(x) = A(x) ÷© B(x) ≡ A(x) ∗B−1(x) mod P(x)
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Example 2
With p = 2 and m = 3 (GF23), P(x) = x3 + x+ 1.
Let’s define A(x) = x2 + x+ 1 and B(x) = x2 + 1.

A(x) ⊗B(x) = A(x) ∗B(x) ≡ (x2 + x+ 1) ∗ (x2 + 1) mod P(x)

≡ (x2 + x+ 1) ∗ (x2 + 1) mod P(x)

≡ x4 + x3 + x2 + x2 + x+ 1 mod P(x)

≡ x4 + x3 + x+ 1 mod P(x)

≡ (x3 + x+ 1)(x+ 1) + (x2 + x) mod P(x)

= x2 + x

3 Elliptic Curves

Definition 1 (Elliptic Curve (EC))
In mathematics, an elliptic curve is a plane and symmetric algebraic curve defined by an
equation of the form y2 = x3 + a.x + b with x y a b ∈ Z. The Figure below presents an
example of an elliptic curve.
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Figure 1: Example of an elliptic curve defined by y2 = x3 + 7

3.1 Elliptic Curves using cyclic finite groups

Definition 2 (Elliptic Curve Cyclic (ECC))
Considering a value m ∈ Z with m > 3, we can define a cyclic group from the EC equation:
y2 = x3 + a.x + b curve defined by an equation of the form y2 ≡ x3 + a.x + b mod m with
x y a b ∈ Z. In other words, the ECC group based on the modular group Zm is the set of all
pairs (x, y) verifying y2 ≡ x3 + a.x+ b mod m.
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Definition 3 (Operator • for ECC)
Considering a cyclic group G defined by y2 ≡ x3 + a.x + b mod m. We can set •, a binary
operator such that:

– • is closed: ∀a b ∈ G, (a • b) ∈ G

– • is associative: ∀a b c ∈ G, a • (b • c) = (a • b) • c

– • is commutative: ∀a b ∈ G, a • b = a • b

– • has a neutral element ι•: ∀a ∈ G, a • ι• = ι• • a = a

– There exists an inverse for every element of G: ∀a ∈ G,∃a−1, a • a−1 = a−1 • a = ι•

• is then defined, for every element A(xA, yA) andB(xB, yB) of ECC, by A•B = C(xC , yC)
with xC = s2 − xA − xB mod m and yC = s(xA − xC)− yA mod m. The value of s depends
on the equality of A and B.

– if A = B, s = (yB − yA)(xB − xA)−1 mod m

– s = (3x2A + a)(2yA) mod m otherwise (A 6= B)

From a primitive element P , we can start a cyclic group G. We can enumerate all the
elements of the group from P . Because • is closed, for every element Q ∈ G, P •Q ∈ G. A
enumeration of the elements would be P ; 2P ; 3P ; ...; qP with q the number of elements in G.

Example 3
A primitive element for E : y2 ≡ x3 + a.x+ b mod m: A(5, 1).
By calculation of the elements in E, we obtain q = 19

Result 7
For a group on a elliptic curve E, defined from the primitive P and containing q elements,
P • qP = ι•.

3.2 Elliptic Curves using extended Galois Fields

In the same way, we can define the elliptic curves using Galois Fields.

Definition 4 (Elliptic Curve Cyclic groups with GFpm)
Using GFpm, the elliptic curve is not symmetric anymore. A group G is defined by all
X Y ∈ GFpm which respects Y 2 + XY ≡ X3 + a.X2 + b mod P(x) with P(x) an irreducible
polynomial for GFpm.

The operator • is defined, for every element A(xA, yA) and B(B(x), B(y)) of ECC, by
A •B = C(xC , yC) with

– if A = B,
s ≡ xA + yA(xA)−1 mod P(x)

xC ≡ s2 + s+ a mod P(x)

yC ≡ s(xA + xC) + xC + yA mod P(x)
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– if A 6= B,
s ≡ (yB + yA)(xB + xA)−1 mod P(x)

xC ≡ s2 + s+ xA + xB + a mod P(x)

yC ≡ s(xA + xC) + xC + yA mod P(x)

Here again, from a primitive element P , we can start a cyclic group G. We can enumerate
all the elements of the group from P . However, the elements in G are defined by polynomials.
The list of the polynomials can be generated from g = x, a generator from the group. To
get the next polynomial of a polynomial q, we calculate q.g mod P(x).

Result 8
Every polynomials in a cyclic group GFpm defined with the irreducible polynomial P(x), and
generated with g, can be expressed by gn with n an integer included between 0 and pm − 2.

Result 9
Because GFpm is a cyclic group of 2m elements, the inverse of a polynomial gn is a polynomial

gn
′

with n′ = pm − 1

Example 4
Let’s consider the group GF24, with the generator g = x and P(x) = x4 + x + 1. We set
the elliptic curve E over GF24 defined by all pairs (x, y) respecting Y 2 + xy ≡ x3 + g4.x2 +
1 mod P(x).
The number q of elements on E is equal to 15, and the inverse of gx is equal to g−x =
g(2

m−1)−x = g15−x

4 Digital Signature

4.1 Protection by Identification

Because of privacy, the content of sent data must be hidden. Encryption techniques have
been designed to protect the content of data however. The messages are exchanged from a
machine to another one, and are encrypted using keys. Each user has a set of two related
keys: a public key, and a private key. The public key is, as indicated by its name, public
and can be widely shared. The private key is only known by its owner. The sender uses the
receiver’s public key to encrypt its message, and the receivers use his private key to decrypt.

However, the messages are usually exchanged on open networks environment. This aspect
of communication leads to possibility of security problems. A famous example is the ”man-in-
the-middle” attack. While communication is initialized between two users, a third malicious
user, can intercept the communication and alter its content. The receiver thinks he is
receiving a message from the sender while he is actually receiving it from someone else.

The ensure the identity of the sender and the content of the message is correct, digital
signatures have been established. The receiver doesn’t need to know how the signature has
been encrypted but how to decrypt it, to be sure that the message has not been corrupted.

Assuming that each user has a pair of public and private key, a digital signature is
generated as following:
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1. The sender generates a signature depending on the content of the message and the
private key and his private key. The use of hash function on the message content to
generate the signature is used during the generation. More ephemeral values, higher
is the security of the signature. The advantage of using ephemeral is that, from the
same message, you get different signatures. In the same way, the chosen values used
to sign the message must be high to increase the complexity of a possible decryption.
Basically, the private key of the sender is signing the message transmitter, and the
hash function the message content.

2. The receiver receives the message, and using the public key of the sender, he must be
able to ensure the correctness of the message. If a hash function has been used during
the encryption, the same one must be used during the decryption. For this reason, the
hash function must be a part of the public key.

There exists several ways to generate a digital signature. The two most factors of the
generation are: (i) the used algebra or arithmetic technique; and (ii) the hash function to
sign the content of the message. We present below a way to generate digital signature using
elliptic curve theory and more precisely using extended Galois fields applied to elliptic curve
theory.

4.2 DSA with ECC

4.2.1 Generation

An Elliptic Curve can be used to generate a digital signature. The approach works because
of the cyclic aspect of a group generated from an elliptic curve. From a group, defined by
elliptic curve equation E : y2 ≡ x3+a.x+b[m], and a primitive A = (xA, yA), a set of q points
can be generated. To generate a private key, the sender picks one of these numbers, defined
by B, such as there exists d ∈ {1..q− 1} which verifies B = dA. This pair of coordinates are
the ”private” base of the signature. The ephemeral aspect of the signature is represented by a
number kE ∈ {1..q−1} in order to get R = kEA = (xR, yR). To create the final signature, we
also need to introduce a message-related part, using a hash function h. These three aspects
are combined into a value S such as, for a specific message M , S ≡ (h(M)+d.xR)k−1E mod q.
k−1E is defined such as k−1E .kE ≡ 1 mod q. The message transmitter will share the following
values with the receiver: (m, a, b, q, A, B, h). The signature is now fitted as (xR, S).

4.2.2 Verification

The receiver of the message has now all the keys to verify the correctness of the signature.
Because xR is used to generate S, it is possible to retrieve the value of xR by inversion.
Considering W the inverse of S modulo q, that is W.S ≡ 1 mod q, we can ”eliminate” the
variables around Xr in the calculation of S. The primitive element A and the resulting value
B from the private key are known. It appears that R = W.h(M).A + W.r.B mod q then
we the receiver can defined P = (W.h(M) mod q)A+ (W.r mod q)B = (xP , yP ). The proof
is provided below. Because he doesn’t know R, can test the equality P = R. However, he
knows xR thus he can perform the test xP = xR. If the equality is true, then the signature
of the message can be considered correct.
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4.2.3 Proof

S ≡ (h(M) + d.r)k−1E mod q
kES ≡ (h(M) + d.r) mod q
kE ≡ (h(M) + d.r)S−1 mod q
kE ≡ (h(M) + d.r)W mod q
kE ≡ W.h(M) +W.d.r mod q

kE.A = (W.h(M) +W.d.r mod q).A
kE.A = (W.h(M) mod q).A+ (W.d.r mod q).A
kE.A = (W.h(M) mod q).A+ (W.r mod q).d.A
kE.A = (W.h(M) mod q).A+ (W.r mod q)B �

4.3 DSA with ECC using Extended Galois Field

4.3.1 Generation

The exact same approach can be used with Extend Galois field. According to the elliptic
curve using Galois fields definition, the equation of the curve is E : y2 + xy ≡ x3 + a.x2 +
b mod P(x) and gets a primitive element A. x,y and P(x) are depending on the used extended
Galois field GFpm . A point B can be created using the private key d such that d ∈ {1..q−1}
with q the number of different points on E from the primitive A. An ephemeral number
kE ∈ {1..q − 1} is used to set R = kEA = (xR, yR). Because we are handling values on an
extended Galois field, xR is defined by a polynomial R(x) represented with a binary number.
By base conversion, we get r, such that xR 2 →10 r. As previously, S can be defined for a
specific message M , by S ≡ (h(M) + d.xR)k−1E mod q. Finally, the signature of the message
is (xR, S). and (a, b, P(x), A, B, h) will be shared with the receiver.

4.3.2 Verification and Proof

The verification of the signature and the proof of correctness of the verification are exactly
the same ones than the digital signature using ECC.

5 Related Work

Hash functions One of the important aspect of the signature security is the hash function
used to generate the signature. Different Secure Hash Algorithm (SHA) have been designed
through the years. Important properties must be set.

1. The function must be defined for each entry;

2. The returned values must have the same size, independently of the entry;

3. To be secured, collisions not be able to happen. That is, two different entries can
return the same result.

The most recent works on SHA have been organized in a programming contest. The goal
of the competition was to design a more secure hash function than the existing ones. The
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National Institute of Standards and Technology (NIST) used the approach to create the
standard SHA-3 [12,22].

Digital signatures There exists other way to generate a digital signature. For example,
[10] presents a signature produced using RSA [11]. In 1984, Taher Elgamal designated a
signature based on cyclic groups and discrete logarithms [8]. The NIST has also its own
standard for signature generation based on big numbers [17]. Other generators are based
on large numbers. Using smart cards [9], Schnorr designated a very secure digital signature
on [20,21].

Cryptography The encryption of the message, to hide its content, can be performed using
algorithms such as DES [5] or AES [3]. The second one is a completely public algorithm,
very often used as a standard for encryption. For example, Contiki [2, 4], the Open Source
OS for Internet of Things (IoT), implements it, and its correctness [18] has been ensured
using formal methods by French teams.

6 Conclusion

We have presented how to protect a message based on a signature approach. From the Galois
fields theory, combined with the elliptic curves, it is possible to create a strong signature.
The complexity and the security of the signature have not been discussed in this paper but
the study of how robust is the digital can be made as future work.
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