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I. PARALLEL SKELETONS IN PYTHON

Explicit parallel programming for shared and distributed
memory architectures is an efficient way to deal with data
intensive computations. However approaches such as explicit
threads or MPI remain difficult solutions for most program-
mers. Indeed they have to face different constraints such as
explicit inter-processors communications or data distribution.

PySke [1] is a Python library (on top of mpi4py) that aims at
easing parallel programming for casual users. The implemen-
tation of parallel computation patterns, called skeletons [2], are
provided by the library to keep abstract most of the parallel
aspects of a program. Their implementations in Python are
provided as high-order functions (i.e., functions that take other
functions as input). This makes the skeletons/computation
patterns very general.

PySke is currently a data-parallel approach: The skeletons
operate on distributed data structures. However users do not
have to explicitly manage the distribution of such data struc-
tures. Moreover, PySke provides equivalent computation pat-
terns for sequential data structures and parallel data structures.
We call these patterns primitives when they are implemented
in sequential and skeletons when they are implemented in
parallel.

PySke contains a class SList that extends the list class
of Python with additional primitives, in a functional style (i.e.
the primitives consider the data structure as immutable). It also
contains a class PList that offers skeletons equivalent to the
SList primitives. Trees are also part of PySke: rose trees,
binary trees, linearized trees and distributed linearized trees.
The same primitives and skeletons are provided for all these
data structures.

Among the primitives and skeletons, map and reduce,
inspired from functional programming, are part of PySke.
The example shown in Figure 1 is a piece of PySke code
that computes the Euclidean norm of a vector represented by
data. This listing can be run either in sequential if data is
an instance of SList, or in parallel if data is an instance
of PList. This example also shows that PySke offers a
global view of programs: the structure of the program is
similar (and in this case identical) to a sequential program,
but it operates on a parallel data structure. This is very
different, and much more simple to understand for the casual
programmers, from the SPMD paradigm where a program

squared = data.map(operator.pow(x, 2))
summed = squared.reduce(operator.add)
norm = math.sqrt(summed)

Fig. 1. Example of PySke code: Euclidean norm

should be understood as the parallel composition of sequential
communicating programs.

II. PROGRAM TRANSFORMATIONS

A program can be optimized thanks to transformations:
The goal is to reduce the computation costs. Calculi, such
as the Bird-Meertens Formalism [3], [4], propose theorems
and equalities that can considerably reduce the computation
time of a program. These transformations range from avoiding
multiple traversals of intermediate data structures to changing
the order of algorithmic complexity of a program. The latter
is of course more complex to achieve and is most often not
performed automatically. The former can be automated yet can
offer substantial performance gains.

For example, the composition of two map can be trans-
formed into a single use of map, thus removing the allocation
and transversal of an intermediate list. Considering two func-
tions f and g, (map f) ◦ (map g) can be transformed into
map (f ◦ g).

Other examples are more context-dependent and can take
advantage of algebraic properties. For instance, Boolean values
can be represented within a list, and handled with classical
primitives such as map or reduce. Since the following equality
holds:

∧n
i=1(¬ xi) = ¬(

∨n
i=1 xi), the program (reduce and)◦

(map not) can be optimized as not ◦ (reduce or).
These examples are equivalences between compositions

of primitives, but they are also true if skeletons are used
instead of sequential functions. There exist other forms of
theorems which, from specific classes of functions, transform
naive specifications into programs using primitives (e.g., the
diffusion theorem [5], homomorphism theorems [6]).

In most of the existing skeletons libraries, these transforma-
tions are not automated. Some transformations exist for C++
libraries, than are based on meta-programming techniques. It is
however quite complex to implement program transformations
in this way, and only a few transformations are implemented
in these libraries [7], [8]. In the context of functional pro-



Fig. 2. Example of skeleton expression optimization

gramming, and the Coq proof assistant, such transformations
are also automated [9].

PySke aims at easing parallel programming. The current
version of the system only supports the composition of skele-
tons. Therefore we need to provide an automated way to
optimize these compositions. Unlike C++ or Scala [10], but
like [11], we propose to perform the transformation at runtime.
In order to do so, the call to the skeletons will no longer
directly call a given computation pattern, but will rather build a
skeleton expression. This skeleton expression is then executed
by explicitly calling a run method. This method will first
optimize the skeleton expression using rewrite rules such as
the equivalences mentioned above. For example, the skeleton
expression corresponding to (reduce and)◦(map not) can be
transformed as presented in Figure 2.

In the current version of the work, we do have the trans-
formation rules we want to apply, but the transformations
are applied manually. In the next version of PySke, we will
provide automatic optimization at runtime.

III. PERFORMANCES

To test how efficient is program transformation with PySke,
we measured the computation times of three equivalent pro-
grams on distributed lists X of 5∗107 Booleans. Each program
has been executed 30 times on 30 different datasets.

X.map(operator.not_).reduce(operator.and_)
X.map_reduce(operator.not_, operator.and_)
not (X.reduce(operator.or_))

In the second line, map_reduce is a skeleton we added. In
a single pass it applies it first argument to the elements of
the object list and computes the reduction. This skeleton has
the same semantics than a composition of map and reduce
but performs one less list traversal, and does not require the
allocation of the intermediate list produced by map.

The three programs were executed on a shared memory
machine (256 Gb), with two Intel Xeon E5-2683 v4 processors
each having 16 cores at 2.10 GHz. The used software is
the following: Ubuntu Linux 18.04, Python 3.6.7, mpi4py
version 3.0.0, OpenMPI version 2.1.1. Figure 3 presents the
average computation time, and the relative speed-up for each
version. It demonstrates the interest of optimizing programs
using transformation rules. In this case, we used specific
rules, based on De Morgan’s laws to obtain the best program.
However, even by replacing the use of the two skeletons
map and reduce by only map_reduce, we obtain better
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Fig. 3. Example of performance increases using program transformations

performances. This replacement can be done in all programs
containing a composition of map and reduce.
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