
2D-Clustering through Approximation Method
using Geometric Calculation

Jolan Philippe
School of Informatics, Computing and Cyber Systems

Northern Arizona University, Flagstaff, AZ, U.S.A.
jp2589@nau.edu

Michael Gowanlock
School of Informatics, Computing and Cyber Systems

Northern Arizona University, Flagstaff, AZ, U.S.A.
michael.gowanlock@nau.edu

Abstract—Recently, the size of the data largely increased.
Consequently, this increase in dataset size substantially
increases the time-to-solution of many well-known data
analysis algorithms and tools. Data analysis is a large-scale
science and includes challenges to existing architectures.
In particular, one data analysis tool is clustering, which
finds groups of similar data points in a feature space.
Different approach already exists. As a concrete example,
detecting galaxy clusters or classifying stars are challenges
in astronomy.

Given that clustering is computationally expensive, we
explore an approximate clustering solution, where we will
examine the trade-off between clustering accuracy and
algorithm performance. To achieve this, we index the
dataset in a grid of constant size-defined cells. Each cell
is considered as a cluster entity. From points in a cell, we
calculate the probability of being in the same cluster of the
neighbor cells.

Index Terms—DBSCAN, Parallel Clustering, Approxi-
mation, Large datasets, Overlapping area.

I. INTRODUCTION

The constant increasing size of data challenges the de-
velopers to improve their computational techniques [1].
This ”data revolution” is due to continually improved
hardware which is more precise and efficient. These
data are exploited using computational algorithms in
many scientific fields. The term computational science
describes scientific and engineering inquiry in which
the computer plays an essential role (e.g., computational
biology [2]), even if some fields are more mature than
others. Make clusters from a large set of data in a
reasonable amount of time remains a hard problem to
solve. Make a group of similar data is used in many
scientific applications, and many different approaches
already exist, depending on the type of data, and the
wished precision [3].

Many domains use Density-Based Spatial Clustering
of Applications with Noise (DBSCAN) [4]. The perfor-
mance of the DBSCAN algorithm has been improved
thanks to different techniques such as parallel imple-
mentation based on indexing techniques [5], [6]. The
points are clustered using two parameters: (i) ε, an

arbitrary distance used to find the neighborhood of a
point, and (ii) minPts, the minimum number of points
within ε-distance to create a cluster. The most common
approach is to compare the distance points to points
to define which ones can be in the same cluster. This
method gives exact results, but the cost of computation
is expensive. There already exists different optimizations
that considerably reduce the cost of calculation. This
paper studies a new reduction of calculation time with
an approximation of a solution for creating clusters with
geospatial data in two dimensions. This approach is
based on the intersection of the ε-area around points
of cells, and their neighbors. This paper makes the
following contribution.

● We propose formulas to calculate the intersection
area of a circle and cells of a grid, based on circle
segment and trigonometry theory;

● Using the defined equations, we present an approx-
imation of DBSCAN. The clusters are represented
by cells and not by points anymore.

The organization of the paper is as follow. In Section
II, we describe the DBSCAN algorithm, with related
works such as already existing optimizations. Section
III presents the indexing technique avoiding useless cal-
culation. The overlapping area concept and the relevant
decision are introduced in Section IV. Section V gives
an overview of the algorithm used to solve the problem.
Finally, Section VI and Section VII presents future
works and the conclusion of the study.

II. BACKGROUND

A. The DBSCAN Algorithm

The DBSCAN algorithm aims to cluster points de-
fined in arbitrary dimensions. The algorithm uses two
parameters: a distance ε and a minimum number of
points minPts which have to be within a ε radius to
be considered as a cluster. The entry parameters are
then an estimation of the point density of the clusters.
The main idea is, from a point in a database, look for
its ε-neighborhood, and check that there are at least
minPts points. If there is, the point is a member of



a cluster. To find every point of this cluster, we record
the ε-neighborhood point-by-point from the ones which
are already in the same cluster. If a point doesn’t have
minPts ε-neighbors, it is considered as noise. The
distance calculation can be made in different ways, but
it used to be the Euclidian natural distance:

disteuclid(A,B) =

√

∑
dim
i=1 (xAi − xBi)2

where xAi (resp. xBi) is the value of the point A
(resp. B) for the ith dimension. An outline of the
expression of DBSCAN [4] is presented in Algorithm
1. The algorithm take several variables as input: (i) the
dataset D of points to be clustered; (ii) the distance
ε to find neighborhood of a point; (iii) the minimum
number of points, minPts, to consider a cluster; and
(iv) a function to calculate distance between points.

Algorithm 1 The DBSCAN Algorithm
1: procedure DBSCAN(D, ε, minPts, dist)
2: C ← 0
3: for each points P ∈D do
4: if label(P ) ≠ undefined then
5: continue
6: end if
7: N ← NeighborSearch(D,ε,P ,dist)
8: if ∣N ∣ <minPts then
9: label(P )← Noise

10: continue
11: end if
12: C ← C + 1
13: label(P )← C
14: S ← N/{P}

15: for each points Q ∈ S do
16: if label(Q) = Noise then
17: label(Q)← C
18: end if
19: if label(Q) ≠ undefined then
20: continue
21: end if
22: label(Q)← C
23: N ← NeighborSearch(D,ε,Q,dist)
24: if ∣N ∣ ≥minPts then
25: S ← S ∪N
26: end if
27: end for
28: end for
29: end procedure

To ensure better performance for the research neigh-
bors, an index I of the points used to be created before
the execution of DBSCAN. It is then passed as an argu-
ment of the function and is used in NeighborSearch.
The algorithm examines all points P in D that have not
been visited yet (label(P ) ≠ undefined). The neighbors

of P are stored in a set N . If N is large enough
(∣N ∣ ≥ minPts), P is considering as starting a new
cluster. P is a noisy element otherwise. All the neighbors
are explored. Two cases can happen. A neighbor Q is
either already in a cluster, and then we don’t treat it, or
Q is now a member of the same cluster than P . If Q
is not noise, and has enough neighbor to form a cluster,
its neighbors are also members of the same cluster. The
output of the algorithm is a label for each point of the
dataset. It is either Noise or the id of a cluster.

B. Related Work

Many approaches have addressed improvement of
DBSCAN performance[7], [8], [9], [10], [11]. These
optimizations are made using parallelism. In [11], a
MapReduce[12] implementation of DBSCAN is pro-
posed. The program is split into two parts. First, small
local clusters are made using split data distributed on
the nodes. A reduction of these results are made in
a second part to get bigger clusters. The clusters are
first merged and then relabeled to obtain a final result.
It is common to make several DBSCAN execution in
science fields (e.g., space physics and aeronomy). The
execution variants differ by their input parameters. It
appears that several results can be reused during the
variant computations. [8] presents very good optimiza-
tions for DBSCAN based on the use of commonalities on
multithreading programs. Most of the optimizations are
based on GPU computation to take advantage of the GPU
architecture. However, [7] presents a grid-based hybrid
approach of DBSCAN, using both GPUs in conjunction
with multicore CPU. Two GPU kernels are used. The
first one is used to compute the ε-neighborhood of the
points without using shared memory. HYBRID-DBSCAN
takes advantage of the shared memory on the GPU
to page the cells, before making distance calculations.
With CUDA-DClust [9], Böhm et al. take advantage
of the extremely high parallelism of the GPU, and its
low cost of memory transfer. The presented algorithm
starts by creating chains of points in parallel on the
GPU. The algorithm keeps track of collisions, that is
two chains belong to the same cluster. The chains are
finally merged into clusters based on the collisions. This
approach is very similar than Yaobin et al.’s in [11]
This main idea is reused in the Mr.Scan implementation
[10], an algorithm which performs kernel optimizations
by reducing host-GPU interaction. Another optimization
for DBSCAN implementation based on GPU calculation
is discussed in [13]. An index of the data is generally
used on these different approaches to reduce the time of
computation, and help to remove useless calculation. On
a grid-based algorithm approach, the points are stored
into cells. The points from a cell are compared to
the ones in the neighbor cells. The simple approach



Fig. 1. Indexing of points from a dataset D. A is the lookup array to
D, G the index array and B the lookup array of G

is to compare each cell with all of its neighbors. [14]
presents an optimization of these comparisons, by non-
duplicating the computation, based on the symmetry of
the calculation. Gan and Tao proposed an approximate
sequential solution [15], [16], faster to compute than
DBSCAN, and with outstanding accuracy.

III. INDEXING METHOD

Since the datasets are extensive, it is convenient to
make the data more accessible. We outline in this Section
an indexing method to facilitate the data access and
remove useless calculation. The indexing is similar than
in [7] and [14] solutions. A grid index is appropriate
to distance calculation. By making cells with ε side
squares, we are sure that all the points within ε-distance
are contained in the direct neighborhood of the current
cell. This approach is similar to the method used for tra-
jectory calculations[17]. On a two-dimensional dataset,
the points from the points dataset D are defined by
two coordinates: x and y. The two-dimension grid is
represented with several arrays. An example is given in
Figure 1.

The array A is a lookup array of the dataset D,
respecting the spatial position of the elements. In other
words, the points are sorted to make them near other
spatially close elements. A linearized id defines each
cell. The array B contains the id of the non-empty cells
of the grid. Array G, which has the same length of B
is a lookup array giving information about the contained
points of the cells. For each cell, contained at the position
h in B, two values are defined: Ahmin and Ahmax. These
values define the position in A of the points contained
in the cell h.

For example, considering the example in Figure 1, the
cell with the linearized id 22, at the 6th position, contains
the points from 14 to 15 in A, that is the points p26 and
p7.
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Fig. 2. Example of overlapping areas from points of cell with the cells
of the neighborhood
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Fig. 3. Two cases of overlapping area calculation

IV. OVERLAPPING AREA

The main idea with our approach is to estimate, from
a point p, the number of points within a distance ε.
Knowing the density of a cell, we need to calculate the
area contained in the ε-distance of the point. That is, for
a cell, approximate the number of points which could be
in the same cluster of p. Because the grid is constructed
with ε side cells, we can consider every point of a cell,
members of the same cluster.

The decision of merging the cluster of a given cell,
and the one of a neighbor cell which contains nc point
objects are made with the following formula:

d = Ao
Ac

∗ nc ∗ p

with Ao, the overlapping area of a circle of radius ε from
a point and the cell, and Ac, the area of a cell, defined by
ε2. Because the distribution of points is not necessarily
uniform, we need a probabilist constant p to make our
decision more or less strict. If there exists a point within
the current analyzed cell such that d ≥ minPts, the
neighbor cell is considered in the same cluster. Figure 2
shows an example of the possible overlapping areas from
points within a cell.

The calculation of Ao, the overlapping area, de-
pends on the cell position. We consider two types of
cell: the corners, and the centered cells. In Figure 2,
C1,C3,C7,C9 are corners, while C2,C4,C6,C8 are
centered cells. Figure 3 presents two simple cases when
these overlapping areas are defined. They are not neces-
sarily defined, depending on the reference point. If one
of the coordinates corresponds to a limit of the cell,
the opposite neighbor wont be covered by its circle. In
both cases, considering A=(xA, yA), B=(xB , yB) and



P=(xP , yP ), R is defined by
R = (xR, yR) = (

(xA+xB)
2

, (yA+yB)
2

). We consider h the
distance from P to R. Then, the area a1 is equal to

a1 = ∫
−h sin(θ/2)
h sin(θ/2) ∫

h cos(θ/2)√
h2−x2

dy dx

with θ = 2 ∗ arccos(h
2

ε
)

which can be simplified to

a1 =
1
2
h2(θ − sin(θ))

The area a2 is calculate using the triangle area formula.
Finally, the overlapping area of a corner is simply
defined by a1 + a2.

Calculate the overlapping area of a centered cell is
equivalent to calculate the area of global side and remove
the two corner areas. For example, using Figure 2, calling
Ai the overlapping area within Ci, we have the following
result

A2 = overlapping((C1 ∪C2 ∪C3)) −A1 −A3.

V. ALGORITHM OVERVIEW

A. Algorithm

To design an approximation for DBSCAN, we used the
indexing method combined with the overlapping area
presented in Sections III and IV. The specific entry
parameters of the algorithm are the grid resulting from
the indexing method, and a probabilistic factor for the
decision taking.

We start by making a set for each cell, to contain the
linear ids of the cells which will be in the same cluster.
To make clusters, every non-empty cell is considered
globally. The goal is to merge cells that have enough
points (greater than minPts), within an ε distance from
a point, in the same cluster. If two cells appear to be in
the same group, they have to merge their cluster. That is,
all the cells already defined as being in the same cluster
than the current analyzed one, must update their set of
ids by adding the new one. At the end of the execution,
each cell has a set of several ids. To identify the different
clusters, the maximum linear id of each set is kept. This
choice is totally arbitrary. It could be the minimum one.

An outline of the algorithm is presented in Algo-
rithm 2. The variables taken as input are: (i) the index
G as a grid; (ii) a probabilistic factor for the decisions;
(iii) the distance ε to find neighborhood of a point; (iv)
the minimum number of points minPts. We can notice
that we don’t need to calculate distances anymore, then
the dist parameters from Algorithm 1 has been removed.

To be able to compare different solutions, the cluster
ids must be standardized. For C clusters, we distribute
new ids. The new ids are integers in [0;C].

Algorithm 2 Approximation of DBSCAN Algorithm
1: procedure APPROXIMATE DBSCAN(G, factor, ε,
minPts)

2: for each non-empty cell C ∈ G do
3: cluster(C)← {C}

4: end for
5: for each non-empty cell C ∈ G do
6: N ← neighbors(C)

7: for each point P ∈ C do
8: A← overlapping arround(P )

9: for i in 0 .. ∣A∣-1 do
10: np← N[i].nb points∗ A[i]

(ε2) ∗factor
11: if np ≥minPts then
12:

cluster(C)← cluster(C)

∪ {N[i]};
13: for each cell Cn ∈ cluster(C) do
14:

cluster(Cn) ← cluster(Cn)
∪ {N[i]};

15: end for
16: end if
17: end for
18: end for
19: end for
20: for each non-empty cell C ∈ G do
21: cluster(C)←maxid(cluster(C))

22: end for
23: end procedure

B. Optimizations

In the implementation of the approximation of DB-
SCAN using overlapping method, we made several op-
timizations. Because we are testing every points of a
cell to calculate overlapping area with neighbors, it is
possible to find several time that a cell is in the same
cluster. In addition, there is no chance that an empty
cell has enough point to be clustered with the same
current analyzed one. Using a boolean arrays, we defined
what calculation to do, and then which ones can be
removed. Thanks to the index, we only iterate on non-
empty cells. The second loop can also consider less cell
to calculate. Considering that to start a cluster, a cell
must be dense enough, we consider that the points in a
cell which verifies π

4
∗ p ∗ nc < minPts, with π

4
∗ 100

the percentage of covered area of a circle of radius ε/2
and a ε side square, p the probabilistic factor and nc
the number of points in the cell, are outliers. The cells
containing outliers are not calculated.

C. Parallelization

In our algorithm, cells are computed one-by-one,
independently. To get a more efficient implementation
of the algorithm, the calculation of the neighbors cluster
belonging are made in parallel. Using OpenMP, the
second loop of the algorithm is parallelized. The shared



index structures is only read and does not need to create
a critical section. However, the cluster set of each cell
is shared must be protected.

VI. FUTURE WORK

The next step of the study, is the accuracy of the
algorithm. By comparing the approximate solution clus-
ters and an exact solution, the accuracy of our im-
plementation will can be evaluated. By evaluating the
correspondence score, defined by a value in [0;1]. The
objective is to obtain a correspondence score closed
to 1 by an approximation. By testing different value
of the probabilistic factor p, and different dataset, we
will be able to obtain a better approximation. GPU
calculation is way much faster than CPU calculation.
Even if we don’t calculate as many points than in an
exact solution, the time reduction provided by GPU
computing is not negligible. Finding a balance between
accuracy and performances is the final goal of the
project. The solution provided by Gan and Tao [15],
[16] outperformed traditional DBSCANimplementation,
and their results have almost a perfect accuracy. We aim
to use parallel computation to get better performances
than already existing solution, without reducing accuracy
results.

VII. CONCLUSION

In this paper, we have presented a grid-based DB-
SCANalgorithm to cluster points in a dataset. By ex-
ploring neighbors physical proximity and density from
points, we proposed an approximation of the clustering,
with defining outliers, also called noise. To conclude
this project, we still need to evaluate the worth of our
solution. By examining the results and the performances,
we want to be able to get an acceptable solution for
clustering.
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