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I. INTRODUCTION

Proof assistants such as Coq [1] can be used to develop

very high assurance software such as a verified C compiler [2]

and verified high performance computing programs [3]. Even

when not used for a full system, using such a proof assistant to

develop critical parts of a system could be interesting, for ex-

ample security monitors [4] or the reconfiguration mechanism

of a component based system.

Many systems are developed using Java, but it is currently

not possible to obtain automatically Java code from Coq to

be embedded in a larger Java development. There are some

instances of Coq being used in the context of a Java system [5],

[6]: either the Java code is written by hand from the Coq

formalization, or there is an additional transformation step

from one of the language that Coq supports, to Java bytecode.

In the latter case, the style of the generated code is fixed.

Our goal is to design a plugin for Coq to be able to generate

directly Java code from a Coq development in such a way that

the generated code can be customized to the programming

style (static, object) used in the Java development. We plan to

use such code for security monitors, component based systems,

high performance computing, and big data applications. We

present what our system can currently generate and discuss

further extensions, in particular keeping in mind that eventu-

ally we want to formally prove that the generated Java code

preserves the semantics of the initial Coq code.

II. AN OVERVIEW OF COQ

The Coq proof assistant can be considered as a functional

programming language, but with a very rich type system

that allows to express mathematical properties. By the Curry-

Howard correspondence, the proofs of theorems are programs.

However it is not convenient to write proof as programs and

Coq offers a specific language of tactics to write scripts that

constructs the proof term for the user.

To give a taste of how Coq code is written, Figure 1 is a

small example. This example defines the type nat of natural

numbers, defined as axiomatized by Peano. O is a natural

number (representing the usual number 0), and if n is a natural

number then S applied to n, written S n, is also a natural

number. If n represents the usual number n, S n represents

n + 1. O and S are called constructors. add is a recursive

Inductive nat : Set :=
| O : nat
| S : nat → nat.

Fixpoint add (n1 n2 : nat) : nat :=
match n1 with
| O ⇒ n2
| S n ⇒ S(add n n2)
end.

Lemma add_n_0 (n:nat): add n O = n.
Proof. induction n; auto. simpl. now rewrite IHn. Qed.

Fig. 1. Short Coq Example

function defined by pattern matching on n1: each possible

ways of constructing n1 are considered. Finally add_n_0 is a

lemma about the operation add. The text between Proof and

Qed is a proof script.

Clearly nat and add are definitions that have a compu-

tational content. Through its extraction mechanism [7], Coq

can produce Haskell, Scheme, or OCaml code that can then

be compiled and executed. During extraction, all “logical”

parts of the Coq code such as add_n_0 are removed. It is

not also so simple because computational and logical parts

can be intertwined. Writing types and functions that can be

extracted, and proving properties about them is one possible

way of using Coq [2], [3].

III. FROM MINI-ML TO JAVA

The extraction of Coq [7] to other programming language

requires an intermediate step where the code is transformed

into Mini-ML [8], a core functional programming language.

This language is syntactically more simple and it can be used

as a basis for our extraction to Java code. Java is a very popular

language, and there exists a lot of programming styles. Indeed,

even if Java is object oriented, it is not the only way to write

programs (e.g. static attributes). The approach used on our

transformation is based on an object oriented programming

style. For an inductive type T defined in Mini-ML (nat is

such a type), we define an interface Java with the same name,

and for each constructor of this type, an implementing class

containing a constructor and accessors.
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public interface Nat {
public Nat add(n2:Nat);

}

public class O implements Nat{
public O (){}
public Nat add(n2:Nat){

return n2;
}

}

public class S implements Nat{
private Nat nat0;

public S (Nat nat0){
this.nat0 = nat0;

}
public getNat0 (){

return this.nat0;
}
public setNat0 (Nat nat0){

this.nat0 = nat0;
}
public Nat add(n2:Nat){

return new S(nat0.add(n2));
}

}

Fig. 2. Generated Java Code

In Mini-ML, as in every programming language, types

are accompanied by functions to handle them. One of the

strong mechanism used in functional languages is the pat-

tern matching. A variable is matched with several patterns

corresponding to the constructors of its type definition. The

resulting expression attached to a pattern is derived into Java

code for the corresponding class.

The Mini-ML code corresponding to the Coq code of

Figure 1 is translated into the Java code given in Figure 2.

IV. DISCUSSION

In order to dynamically instantiate subclasses of main types

(e.g Zero and Succ for Nat), a static factory method pattern

can be introduced. For each instantiable object, a static func-

tion can be defined to control the creation of a class instance.

The original constructors become private to only allow the

factory to build the instances. In addition, every constructor

without fields (e.g. O in the nat context), does not need to

be instantiated several times. A way to limit the number of

instantiations is to use a singleton pattern in conjunction with

the static factories.

As mentioned above, there exists several programming style.

The proposed transformation is not the only possible one.

For example, instead of using an interface to group the

constructors into a single type, we can use an abstract class

without any definitions.

One of the advantages of formalizing the languages with

Coq is the possibility of proving the preservation of the

semantic. In other words, it’s possible to prove that the trans-

formation of the Mini-ML to Java doesn’t alter the semantic

of the initial language. However, what if the user decide to

implement the interface using her own classes? We cannot

guarantee that a call to add has then the same semantic as in

the Coq case, because of the new elements. There exists a way

to block the extension of classes in Java, using the keyword

final (e.g Figure 3). Our tool will allow the users to choose

among a variety of code generation styles.

An object-oriented language seems to be an appropriate

language for our extraction. Nonetheless Java has some limits

including no direct support for higher-order functions. There

exists alternative, such as the Function interface (Java 8) to

model functions with another function as parameter. Using

the same interface, it is possible to create partial applications.

�private�
Nat

�final�
Nat’

- n: Nat

+�static�O: Nat’
+�static�S(n: Nat’): Nat’
+add(n: Nat’): Nat’

Zero Succ

Fig. 3. Nat Class Constrained Hierarchy

Another lack of Java is the modular aspect. One of the strong

tools available in Coq is its modular approach. Programmers

can parameterize their modules and their arguments have mod-

ule types (providing a set of type and value declarations and

definitions). The most direct solution is the generic mechanism

of Java which allows parameterizing a class by a type. In the

OCamlJava project [9], Clerc proposes to constrain the generic

types by the extension of a class respecting the specification

of the module parameter. This is a starting point but there are

still remaining challenges with this approach.

V. CONCLUSION

In this paper, we presented a generator of Java programs

from ML code. As numerous is the number of Java users, the

language allows several approach to write semantically equiv-

alent programs. The project merits to be deeply completed

to allow a tranformation of the whole Coq language to Java,

paramaterized by the user preferences.
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