2017 International Conference on High Performance Computing & Simulation

Formalization of a Big Graph API in Coq

Jolan Philippe and Wadoud Bousdira

Univ. Orléans, INSA, CVL, LIFO, EA 4022, France
Email: firstname.lastname@univ-orleans.fr

Frédéric Loulergue

School of Informatics Computing and Cyber Systemes
Nothern Arizona University, USA
Email: frederic.loulergue@nau.edu

POSTER EXTENDED ABSTRACT

L APIS FOR BIG GRAPH COMPUTATIONS

We now live surrounded by sensors, we create information
continuously and we leave constantly computer traces of our
activities. The processing and analysis of this huge volume
data, so called Big Data, offer innumerable and still largely
unexplored: health (epidemiology, genomics ...), complex
energy networks, intelligent cities, forecasting and management
of environmental risks, etc. Big Data has, and will increasingly,
a very significant impact at the societal economic and
commercial levels. Many interesting Big Data problems can be
modeled as problems on graphs/networks.

In the recent years, several API for big data processing have
been proposed such as Pregel [1], Giraph, GraphX, GraphLab,
etc. Even if these API are quite high-level, developing Big Data
analyses remains error-prone. We are interested in providing
tools for the development of correct Big Data applications.

II.

By correct programs, we mean formally verified programs,
and more specifically the correctness of programs with respect
to a specification. There are two main approaches to program
correctness in this context. In a posteri verification the
specification and the program are written independently and
the proof of correctness is done usually using a program logic
related to Hoare logicand is more or less automated. Tools that
support this kind of verification include for example Frama-C
[2] for sequential C programs. In correctness-by-construction
the specification is written first, and then step-by-step this
specification is transformed into an efficient executable
program. Program calculation, in particular of functional
programs [3] are methods to develop correct-by-construction
programs. Proof assistants are well suited to support program
calculation of functional programs [4]. To our knowledge none
of these approaches has been used yet to reason about Big
Graph programs. The goal of the proposed work is to formalize
a functional Big Graph API using the Coq [5] proof assistant.
This formalization could then be used either for a posteriori
verification or for correctness-by-construction using the
SyDPaCC framework [6].

PROGRAM VERIFICATION

978-1-5386-3250-5/17 $31.00 © 2017 IEEE
DOI 10.1109/HPCS.2017.140

893

In practice, Coq can be seen as a functional programming
language but with a rich type system that allows to express
mathematical properties. Coq is based on the Curry-Howard
correspondence: a program and a proof are of the same nature.
This imposes some restrictions on the programs that can be
written in Coq. In particular all functions should be
terminating because a function can also be a proog and it is
meaningless to have a non-terminating proff. One essential
feature of Coq for this work is that is possible to extract
functional programs in Haskell, Ocaml or Scheme from Coq
developments.

II1.

The need of a graph datatype that implements a sequential
calculation for parallel computation led us to study the new
domain-specific language Fregel [7] presented by Emoto et al.
It is a functional approach to vertex-centric graph processing,
which means that all vertices can compute in parallel. It
promises good performance on large graph problem solving.
That’s why, inspired by the Haskell implementation of Fregel,
we propose one in Coq [5]. Basically such an API consists of: a
distributed data structure for which there exists a sequential
model, and a set of algorithmic skeletons [8] on this structure,
i.e. functions implemented in parallel that have a semantics
possibly modeled as sequential functions.

FORMALISATION OF A BIG GRAPH API IN COoQ

The main component of the Fregel API is a Graph datatype,
defined as a list of vertex. A vertex is a record type that
contains an identifier, a value and a list of incoming edges. This
is a feature of the vertex-centric model: the edges are stored as
incoming edges of the vertices, and not as outgoing edges. We
hope to have better performances if the vertices are going to get
the information than if they receive it as a message. In our case,
only one vertex computes, the one which get the information.
In a classical case, the first vertex works, by sending a
message, and the second works too by getting the information.

Graphs are also composed of edges : the Edge type has two
fields, the weight of the edge, and the identifier of the source
vertex. An edge can only exist in relation to a target vertex
because of the absence of target vertex in its definition. The
following Coq code realizes these types implementation:

Record Edge B := edge {weight : B ; incoming : Z}.
Record Vertex AB := vertex{vid : Z; val : A;

is : list (Edge B)}.

Defintion Graph A B : = list (Vertex A B).

A and B are type variables : these types are polymorphic. You
can notice that we used the type Z to define the vertex
identifiers. It’s a Coq implementation for the arithmetic integer,
coded in a binary way.

Four skeletons are proposed by Fregel. Each one has its
purpose, but they use same tools. For the ones which use an
iteration on the graph value, a condition of termination must be
established. The type Termination is defined inductively, with
three kinds of termination for any structure to be treated. The
first one is a maximum number of iterations, the second one is
a condition of stop (can be assimilated as a while loop) and the
last one is the fixed state of the graph. For the Fixp condition,
the equality of two graphs must be defined, and shown to be
decidable.

Inductive Termination T := | Iter (n:Z)
| Fixp (eqG: T— T - bool) | Until (cond : T — bool).

The first skeleton, the function gmap, will just apply a
function to each element on a Graph. It looks like a classical
map function on lists (we just give its signature):

gmap: (f:Vertex AB — R) (g:Graph AB) : Graph R B

The second one, gzip is generalization to two graphs. The
two last ones, giter and fregel, are iterative functions. For each
kind of termination, an iterate corresponding function must be
defined with a stop control governed by a maximum number of
iterations : max_op. Now we are sure that the recursive
functions stop in all cases. To use this king of function, an
initialization has to be made before. You can apply a function
to transform each default value with a coherent value for the
problem (Boolean for vertex-cover problem for example). On
the original Haskell functions, the iterate functions use an
infinite list of graph results, and they take the first one which
satisfied the termination condition. We cannot do that in Coq
programming, we have to specify a decreasing argument on all
recursive functions. If none argument is decreasing naturally
(i.e. the recursive calls are done on syntactically smaller terms),
you have to prove there is one measure (returning a natural
number) for which the recursive calls are done on smaller
arguments for this measure.

The first iterative function, giter, uses directly the graph
and iterates a function on it. The other one uses a save of values
to iterate and only at the end, it creates a new graph with final
values. The easier is the first one, because of its simplicity to
implement. You apply your step function on all elements
(thanks to the gmap function, defined earlier). If the
termination condition is satisfied, or if the maximum number of
iterations is reached, you stop the compute and you return the
graph with new values. The ids of vertices are the same so you
can match easily the old values on the old graph with the new
ones on the result.

894

giter (init: Vertex AB — R) (iter : Graph R B — Graph R B)
(term: Termination (Graph R B)) (g: Graph A B)
(max_op : Z) : Graph R B

The fregel operation is the most important. It looks like
giter but it uses aspects of dynamic programming. The values
are not directly stored in the vertices, but in two lists of
computation results: one to get the current values, and the other
to keep the previous values. Here again, an initialization must
be done. You have to begin with an association between the
vertex values, and their corresponding value on the resolution
of the problem. By the way, on this first step, the two lists of
computation results are equivalent, defined with the values on
the problem. As the giter function, you iterate your step
function on the graph using the data stored on the both. At each
iteration, the list of current values takes the results of the step
function. The condition of termination is the same as on giter-.

fregel (init: Vertex AB — R)

(step: Vertex AB— (Vertex AB - R)— (VertexAB - R)—R)
(term: Termination (Graph R B)) (g: Graph A B)

(max_op : Z) : Graph R B

As an example of a Fregel application, you can take the
problem of the reachable vertices from a source. The
initialization function will associate false to each vertex, except
to the source vertex which has a true value. The iterate function
will associate tests if an incoming vertex by an edge is
reachable by current values, or by previous values. If the
incoming vertex is reachable, the destination is too. The best
termination control is the fix state of the graph by the iteration
function, but you can use a predicate to fix a maximum number
of reachable vertices. Define abbreviations and acronyms the
first time they are used in the text, even after they have been
defined in the abstract.

[1] G. Malewicz, M. H. Austern, A.J. Bik, J. C. Dehnert, I. Horn, N. Leiser,
and G. Czajkowski, “Pregel : a system for large-scale graph processing”

in SIGMOD. ACM, 2010, pp. 135-146

F. Kirchner, N. Kosmatov, V. Prevosto, J. Signoles, and B. Yakobowski,
“Frama-C : A software analysis perpective,” Formal Asp. Comput., vol,
27, no, 3, pp. 573-609, 2015.

R. Bird and O. de Moor, Algebra of Programming. Prentice Hall, 1996.

J. Tesson, H. Hashimoto, Z. Hu, F. Loulergue, and M. Takeichi,
“Program Calculation in Coq,” in Algebraic Methodology And
SoftwareTechnology (AMAST), ser. LNCS 6486. Springer, 2010, pp.
163-179.

The Coq Development http://coq.inria.fr. Team, “The Coq Proof
Assistant,”

[2]

[3]
[4]

[5]
[6] F. Loulergue, W. Bousdira, and J. Tesson, “Calculating Parallel Pro-
grams in Coq using List Homomorphisms,” Int J Parallel Prog, vol. 45,
pp. 300-319, 2017

K. Emoto, K. Matsuzaki, Z. Hu, A. Morihata, and H. Iwasaki, “Think
like a vertex, behave like a function! a functional DSL for vertex- centric
big graph processing,” in ACM SIGPLAN International Conference on
Functional Programming (ICFP). ACM, 2016, pp. 200-213.

M. Cole, Algorithmic Skeletons: Structured Management of Parallel
Computation. MIT Press, 1989, available at
http://homepages.inf.ed.ac.uk/mic/Pubs.

[7]

[8]

