Object Oriented Programming

Polymorphism and abstract classes

Jolan Philippe
March 8th, 2024

IMT Atlantique



Last times



Representing objects with UML

The Unified Modeling Language (UML)

= Standard way to visualize a system
= Two concepts:

= Inheritance: to specialize a class into sub-classes
= Aggregation: to compose classes

0.1 1

- age : integer O— - name : string
- weight : float owner - address : string
1.4 1 ~
animals
+ eat() + pet()

*4*

- name : string

+ scream() + digBones()




DEE ciess person:

- name: string 2
3 def __init__(self, name, address):
4 self .name = name

+ scream() 5 self.address
6

; class Cat(Animal):

owner 8
0 def __init__(self, name, age, weight,
, person):
- name : string . L. .
- address : string 10 Animal. __init__(self, age, weight)
1 self.name = name
+ pet() 12 self.owner = person




More behavioral functions

1 class Animal:

3 def __init__(self, name, owner):
4 self.__name = name

5 self.__owner = owner

6

7 def getName(self):

8 return self.__name

0

10 def getOwner(self):

u return self.__owner

12

13 def __str__(self):

14 return f"{self.name}-(owned-by-{self.owner})”



More behavioral functions

1 class Animal:

4 def __copy__(self):

5 return Animal(self.__name, self.__owner)

6

7 def __deepcopy__(self):

8 copied_name = copy.deepcopy(self.__name)

0 copied_owner = copy.deepcopy(self.__owner)

10 return Animal(copied_name, copied_owner)

12 def __eq__(self, other):

13 if isinstance(other, Animal):

14 return (self.getName() = other.getName()
15 and self.getOwner() = other.getOwner())

16 return False



Encapsulation and visibility

A visibility can be defined for each attribute and each function of a class.

public: Accessible from everywhere
private: Accessible from anywhere else than in the class definition

protected: Accessible in the same module (class and subclasses)



In Python

i class MyClass:

3 def __init__(self, value):

4 self.__value = value

5 self.__elements = []

6

7 def getValue(self):

8 return self.__value

g

10 def setValue(self, new_value):
u self.__value = new_value

12

13 def addElements(self, element):
14 self. __elements.append(element)



Final notions

Two last points for this class

= Abstract classes

= Polymorphism



Abstract class

Cannot be instantiated !

Give a general definition, guidelines, for subclasses
Give a list of needed functions without their implementations

Give a default implementation for functions

An abstract class extends abc.ABC

If a class extends an abstract class, it must implements non-defined functions



Animal can be abstracted

- age : integer <>L_1 - name : string
- weight : float owner - address : string
[1.4] 1 :
animals
+ eat() + pet()

L

o

- name : string

+ scream() + digBones()

10



import abc

Class Animal (abc.ABC):
def __init__(self, age, weight):
def eat():
print ("Eat”)
Class Cat(Animal):
def __init__(self, age, weight, name):
def eat(self):
print (f"The-cat-{self.name}-eats”)

def scream(self):
print (" Grr")

11



Polymorphism

Two functions, with the same name, but a different behavior

Two functions with the same name, but in different class
Two functions with the same name, same parameters, but in sub-classes

Two functions with the same name, in the same class, but with different parameters

12



wo functions with the same name, but in different class

1 class Person:

3 def __init__(self):

6 def eat(self):

7 print (" Person-is-eating”)

o class Animal:

11 def __init__(self):

12

13

14 def eat(self):

15 print(”"Animal-is-eating”)

13



Python: Two functions with the same name, same parameters, but in sub-

classes

1 class Person:

3 def __init__(self):

4

6 def eat(self):

7 print (" Person-is-eating”)

o class MVP(Person):

11 def __init__(self):

14 def eat(self):
15 print (" The-MVP-is-eating”)

14



Python: Two functions with the same name, in the same class, but with different

parameters

1 class Person:

3 def __init__(self):

4

6 def eat(self):

7 print (" Person-is-eating”)

8

9 def eat(self, food):

10 print (f"Person-is-eating-{food}")

15



Exercices




Small project

By group, you will need to create a small project to illustrate all the points we have covered in
this class: inheritance, aggregation, class/object attributes, visibility, ...

2 groups: 3-4 students

2 subjects:
= Represent your class, with students, teachers, courses, etc. with functions to manage it

(add, remove, etc.)
= Represent a bank, with clients, several kind of account, cards (debit or credit) etc. with

functions to manage it (add, remove, etc.)

= Additional subject ? You are open

[y

. Make a UML diagram (45min)
. Write Python code for it (45min)

N

3. Presentation (10min each group)

16



	Last times
	Exercices

