
Object Oriented Programming
Encapsulation

Jolan Philippe
March 4th, 2024

IMT Atlantique

1

Last time

Representing objects with UML

The Unified Modeling Language (UML)

• Standard way to visualize a system
• Two concepts:

• Inheritance: to specialize a class into sub-classes
• Aggregation: to compose classes

Person

- name : string
- address : string

+ pet()

Animal

- age : integer
- weight : float

+ eat()

0..1 1
owner

Cat

- name : string

+ scream()

Dog

- name : string

+ digBones()

animals
[1..*] 1

2

UML to Python code

Person

- name : string
- address : string

+ pet()

Cat

- name: string

+ scream()

owner

1 c l a s s Person :
2

3 def i n i t (s e l f , name , a d d r e s s) :
4 s e l f . name = name
5 s e l f . a d d r e s s
6

7 c l a s s Cat (Animal) :
8

9 def i n i t (s e l f , name , age , weight ,
p e r s o n) :

10 Animal . i n i t (s e l f , age , w e i g h t)
11 s e l f . name = name
12 s e l f . owner = p e r s o n

3

Mechanized process

A specification
describing data

A visual model
understandable by

everybody

A code representation
of the model (to be

used for programming)

4

Practicing with additional examples: Library

Specification for a Library
A Library has shelves. On each Shelf, there are Books. A book is characterized by a title, an
author, and a release date. We want to be able to add a book to library, by specifying the
shelf number.

1. Create a UML model for this specification
2. Create the corresponding classes in Python
3. Make instances and test your code

5

Practicing with additional examples: Family

Specification for a Family
A Family is identified with a name, and is composed by family members, who are Persons.
Each Person has a firstname, an age, an height and a favorite color. Then, a Person has a
Gender (for instance Male, Female, Other). A family can also has Animals, which could be
a Cat, a Dog or a Rabbit. An animal has a name, an age, and a specie. All animals can eat
foot. Then animals make a different kind of scream.

1. Create a UML model for this specification
2. Create the corresponding classes in Python
3. Make instances representing your family

6

One step closer to encapsulation

Choose one of the previous examples. Select one class with at least 2 attributes.

• For each attribute of the selected class, write one function named get attribute
returning the value of this attribute.

• For each attribute of the selected class, write one function named set attribute, taking
as argument a new value, and set the value of this attribute with this argument’s value.

7

Encapsulation

Class attributes vs. Instance (ie Objects) attributes

Object attributes
Previously, we accessed attributes from an instance of a class (i.e., an object)

1 c l a s s MyClass :
2

3 def i n i t (s e l f , v a l u e) :
4 s e l f . a t t r i b u t e = v a l u e
5

6 def g e t A t t r i b u t e (s e l f) :
7 return s e l f . a t t r i b u t e

8

Class attributes vs. Instance (ie Objects) attributes

Class attributes
Let’s see how we can access attributes from a class itself

1 c l a s s Animal :
2 c u r r e n t I d =0
3

4 def i n i t (s e l f) :
5 s e l f . i d = Animal . c u r r e n t I d
6 Animal . c u r r e n t I d = Animal . c u r r e n t I d + 1

It is dangerous to not hide currentId. Any external code can modify it

9

Protecting internal content of classes

Visibility
A visibility can be defined for each attribute and each function of a class.

• public
• For an attribute: everybody can use and modify the value of the attribute, even from outside

the class definition.
• For a function: everybody can call the function, even from outside the class definition.

• private
• For an attribute: can only be used and modified within the class definition
• For a function: can only be called within the class definition

• protected
• Usage in the same module only.

10

Python code

1 c l a s s Animal :
2

3 def i n i t (s e l f , name , age , we ight) :
4 s e l f . p u b l i c a t t r i b u t e = name
5 s e l f . p r i v a t e a t t r i b u t e = age # b e f o r e the name
6 s e l f . p r o t e c t e d a t t r i b u t e = we ight # b e f o r e the name
7

8 def p u b l i c f u n c t i o n (s e l f) :
9 . . . # Can be used from any program

10

11 def p r i v a t e f u n c t i o n (s e l f) :
12 . . . # This f u n c t i o n can o n l y be used i n the c l a s s d e f i n i t i o n
13

14 def p r o t e c t e d f u n c t i o n (s e l f) :
15 . . . # Can be used i n the code o f the same module

11

Protecting internal content of classes

Class as black box, to control usage

• Avoid accidental usage
• Protect internal data
• Simplifies interface for users
• Facilitates inheritance

12

Private attributes ñ Accessors

Let is consider all our attributes private... How can we access some of them externally ?

Getter
One function for attribute you want to expose. The function returns the value of the attribute

Setter
One function for attribute you want to be modifiable. The function takes as argument the
new value. You can control the modification (for example: check validity of new value)

13

Python code

1 c l a s s Animal :
2

3 def i n i t (s e l f , age) :
4 i f age < 0 :
5 r a i s e E x c e p t i o n (”Age cannot be n e g a t i v e ”)
6 s e l f . a g e = age
7

8 def getAge () :
9 return s e l f . a g e

10

11 def setAge (new age) :
12 i f new age < 0 :
13 r a i s e E x c e p t i o n (”Age cannot be n e g a t i v e ”)
14 s e l f . a g e = new age

14

Copying and Deep Copying Objects in Python

• In Python, copying objects is a common operation, but it’s important to understand the
difference between shallow copy and deep copy.

Shallow Copy

• Shallow copy creates a new object and inserts references to the objects found in the
original.

• Changes made to the original object’s elements affect the copied object and vice versa.
• Python provides a built-in ‘copy()‘ method and ‘copy‘ module to perform shallow copy.

Deep Copy

• Deep copy creates a new object and recursively inserts copies of the objects found in the
original.

• Changes made to the original object’s elements do not affect the copied object.
• Python provides a built-in ‘deepcopy()‘ method from the ‘copy‘ module to perform deep

copy. 15

Example

1 import copy
2

3 l i s t = [1 , 2 , [3 , 4]]
4 c o p y l i s t = copy . copy (l i s t)
5

6 c o p y l i s t [2] [0] = ' x '
7

8 p r i n t (l i s t) # Output : [1 , 2 , [' x ' , 4]]
9 p r i n t (c o p y l i s t) # Output : [1 , 2 , [' x ' , 4]]

10

11 # −−
12

13 l i s t = [1 , 2 , [3 , 4]]
14 c o p y l i s t = copy . deepcopy (l i s t)
15

16 c o p y l i s t [2] [0] = ' x '
17

18 p r i n t (l i s t) # Output : [1 , 2 , [3 , 4]]
19 p r i n t (c o p y l i s t) # Output : [1 , 2 , [' x ' , 4]]

16

Copying objects

1 c l a s s Animal :
2

3 def i n i t (s e l f , name , owner) :
4 s e l f . name
5 s e l f . owner
6

7 def s t r (s e l f) :
8 r e t u r n f ”{ s e l f . name}”
9

10 def c o p y (s e l f) :
11 r e t u r n Animal (s e l f . name , s e l f . owner)
12

13 def d e e p c o p y (s e l f) :
14 cop ied name = copy . deepcopy (s e l f . name)
15 cop i ed owne r = copy . deepcopy (s e l f . owner)
16 r e t u r n Animal (copied name , cop i ed owne r)

17

Exercise

Let’s start from previous code:
https://jolanphilippe.github.io/course/docs/24-oop/country.py

1. Change the visibility to private for each attribute, and make accessors accordingly: getters
and setters

2. Add an id to the cities, such that all the cities have a different one when created
3. Create a class function areTheSameCities(A,B) that return True if the cities are the

same, False otherwise. Test your method with the previously created cities (Paris, Nantes,
Orleans).

4. Create a class function getTheBestCity(votes) returning the best city from votes. The
entry “votes” is a table of “City”. Test your function with the following votes:
[Orleans,Nantes,Orleans,Nantes,Nantes,Nantes,Paris,Paris]

5. Change the capital city of France with the winner of the previous vote.

18

https://jolanphilippe.github.io/course/docs/24-oop/country.py

	Last time
	Encapsulation

